Introduction to Neural Networks

Ryan Miller

Grinnell College
Statistics

Review of Logistic Regression

Logistic regression uses a set of features, X_{1}, \ldots, X_{p}, to predict a binary outcome, Y, using the following structure:

$$
y_{i}=\operatorname{Bern}\left(\pi=g\left(z_{i}\right)\right) \text { where } g\left(z_{i}\right)=\frac{1}{1+\exp \left(-z_{i}\right)}
$$

Here $z_{i}=\hat{w}_{0}+\hat{w}_{1} x_{i 2}+\hat{w}_{2} x_{i 2}+\ldots$ is the linear predictor for the $i^{t h}$ observation.

Review of Logistic Regression

The model's weights, $\left\{w_{0}, w_{1}, \ldots, w_{p}\right\}$, are found by optimizing the cross-entropy cost function:

$$
\text { Cost }=-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i} \log \left(g\left(z_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-g\left(z_{i}\right)\right)\right)
$$

This optimization relies upon differentiating the cost function with respect to the unknown weights, which we can express using chain rule:

$$
\text { Gradient }=\frac{\partial \operatorname{Cost}}{\partial g} * \frac{\partial g}{\partial z} * \frac{\partial \mathbf{z}}{\partial \mathbf{w}}
$$

Review of Logistic Regression

- In logistic regression, a linear combination of features is passed into the sigmoid function to be mapped to output, \hat{Y}
- In this setting, we may call the sigmoid function an activation function (shown in red)

Neural Networks

- In logistic regression, the observed features are weighted then passed into the sigmoid function and mapped to an output
- Neural networks derive new features through a similar process
- That is, weighted combinations of observed features are passed into an activation function resulting in a neuron (or hidden unit)
- We can set up the structure of our model to contain any number of neurons
- The model's neurons form a hidden layer of new features
- A weighted combination of these neurons can then be passed into another activation function to predict the output
- This structure is a single layer neural network (see next slide)

Single Layer Neural Networks

Grinnell College

Network Depth

Our previous example used a single hidden layer, but in practice we can add more hidden layers:

hidden layer 1 hidden layer 2

Grinnell College
Statistics

Neural Nets vs. Logistic Regression

Logistic regression can be expressed as:

$$
\hat{y}_{i}=g\left(\mathbf{x}_{i}\right)
$$

Similarly, we could express a single layer neural network as:

$$
\hat{y}_{i}=g\left(f\left(\mathbf{x}_{i}\right)\right)
$$

And a neural network with 2 hidden would be:

$$
\hat{y}_{i}=g\left(f\left(h\left(\mathbf{x}_{i}\right)\right)\right)
$$

Notation

Because neural networks can contain many hidden layers, we'll introduce the following notation to keep track of the model's structure:

- \mathbf{x}_{i} will remain the p-dimensional vector of input features (ie: the $i^{\text {th }}$ row in our data, if it's in a tabular format)
- Superscripts, such as $\mathbf{w}^{(1)}$, will indicate the layer of object
- $\mathbf{z}^{(i)}$ will indicate the linear combination of weights and inputs in a particular layer
- $\mathbf{a}^{(i)}$ will indicate the activated output of a particular layer
- b will be used to indicate bias terms in linear combinations

Simple Example

Consider a single input feature, X_{1}, and a neural network with two hidden layers that each contain only a single neuron:

$$
b_{1}^{(1)}+w_{1}^{(1)} X_{1}=z_{1}^{(1)} \rightarrow g\left(z_{1}^{(1)}\right)=a_{1}^{(1)}
$$

The output of the first (and only) neuron in our first hidden layer is $a_{1}^{(1)}$. The model then uses this output as an input to the next hidden layer:

$$
b_{1}^{(2)}+w_{1}^{(2)} a_{1}^{(1)}=z_{1}^{(2)} \rightarrow g\left(z_{1}^{(2)}\right)=a_{1}^{(2)}
$$

- A similar process repeats once more, yielding $\hat{Y}=a_{1}^{(3)}$

Learning the Parameters

Similar to logistic regression, we can use the cross-entropy cost for binary/categorical Y :

$$
\left.\left.\operatorname{Cost}=-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i} \log \left(\hat{y}_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)\right)\right)
$$

- We can use gradient descent to optimize the model's weights and biases
- This requires use to find the gradient vector, but what are the components of this vector?

Learning the Parameters

Let's first use chain rule to solve for gradient vector component $\frac{\partial \operatorname{Cost}}{w_{1}^{(3)}}$:

$$
\frac{\partial \text { Cost }}{w_{1}^{(3)}}=\frac{\partial \text { Cost }}{\hat{y}} \frac{\partial \hat{y}}{z_{1}^{(3)}} \frac{\partial z_{1}^{(3)}}{\partial w_{1}^{(3)}}
$$

This works because \hat{y} is a function of $z_{1}^{(3)}$ (sigmoid), and $z_{1}^{(3)}$ is a function of $w_{1}^{(2)}$

Learning the Parameters

For our simple example:

- $\frac{\partial \operatorname{Cost}}{\hat{y}}=\frac{y}{\hat{y}}-\frac{1-y}{1-\hat{y}}$
- $\frac{\partial \hat{y}}{z_{1}^{(3)}}=g\left(z_{1}^{(3)}\right)\left(1-z_{1}^{(3)}\right)$
- $\frac{\partial z_{1}^{(3)}}{\partial w_{1}^{(3)}}=a_{1}^{(3)}$

Notice how calculating this component of the gradient requires us to pass data, X_{1}, through the network to obtain the quantities $z_{1}^{(3)}$, $a_{1}^{(2)}$ and \hat{y}

Learning the Parameters

Next, let's look at the gradient vector component $\frac{\partial \operatorname{Cost}}{w_{1}^{(2)}}$:

$$
\frac{\partial \operatorname{Cost}}{w_{1}^{(2)}}=\frac{\partial \operatorname{Cost}}{\hat{y}} \frac{\partial \hat{y}}{z_{1}^{(3)}} \frac{\partial z_{1}^{(3)}}{\partial a_{1}^{(2)}} \frac{\partial a_{1}^{(2)}}{\partial z_{1}^{(2)}} \frac{\partial z_{1}^{(2)}}{\partial w_{1}^{(2)}}
$$

- This is similar to our previous expression after realizing $a_{1}^{(2)}$ is a function of $w_{1}^{(1)}$
- Note that gradient components for each bias term are calculated similarly

Back-propogation

- The gradient components of parameters closer to the input layer reuse quantities that were calculated for components closer to the network's output
- $\frac{\partial \operatorname{Cost}}{\hat{y}}$ and $\frac{\partial \hat{y}}{z_{1}^{(3)}}$ in our example
- This makes it beneficial to work backwards through the model when calculating the components of the gradient vector
- Thus, the application of chain rule to find the gradient of a neural network is often called the back-propagation algorithm

Forward-propogation

- You'll also hear the term forward-propagation (or forward pass) referring to the calculation of the cost function function for an observation (or batch of observations)
- As we previously mentioned, the gradient requires several intermediate quantities that are calculated during forward-propagation
- Thus, the process for optimization begins by feeding an observation into the existing network (forward-propagation), then updating the network's parameters via back-propagation

Another Example

Now let's suppose our input layer contains two features, X_{1} and X_{2}, or \mathbf{x}, and our model contains one hidden layer with three neurons:

How many weights and biases are needed as parameters in this model?

Grinnell College
Statistics

Another Example

The first neuron in the first hidden layer is given by:

$$
b_{1}^{(1)}+w_{11}^{(1)} X_{1}+w_{12}^{(1)} X_{2}=z_{1}^{(1)} \rightarrow g\left(z_{1}^{(1)}\right)=a_{1}^{(1)}
$$

The second by:

$$
b_{2}^{(1)}+w_{21}^{(1)} X_{1}+w_{22}^{(1)} X_{2}=z_{2}^{(1)} \rightarrow g\left(z_{2}^{(1)}\right)=a_{2}^{(1)}
$$

And the third is defined similarly.

Another Example

In matrix notation:

$$
\mathbf{z}^{(1)}=\mathbf{b}^{(1)}+\mathbf{W}^{(1)} \mathbf{x}
$$

and

$$
\mathbf{a}^{(1)}=g\left(\mathbf{z}^{(1)}\right)
$$

- As you might expect, we can then find the necessary pieces of the back-propagation algorithm using chain rule and matrix calculus shortcuts
- We'll largely rely on software (autograd) to handle this for us, with the exception of one homework question

Grinnell College
Statistics

Activation Functions

Most modern neural networks prefer the ReLU (rectified linear unit) activation function to the sigmoid function because it can be computed and stored more efficiently:

$$
\begin{array}{ll}
\mathrm{g}(\mathrm{z})=0 & \text { if } z<0 \\
\mathrm{~g}(\mathrm{z})=z & \text { if } z \geq 0
\end{array}
$$

Activation Functions

Most modern neural networks prefer the ReLU (rectified linear unit) activation function to the sigmoid function because it can be computed and stored more efficiently:

$$
\begin{array}{ll}
\mathrm{g}(\mathrm{z})=0 & \text { if } z<0 \\
\mathrm{~g}(\mathrm{z})=z & \text { if } z \geq 0
\end{array}
$$

The derivative of ReLU function is simple (albeit discontinuous), as it's 1 if $z>0$ and 0 otherwise. Software packages will take the derivative at $z=0$ to be zero to promote greater sparsity.

ReLU vs. Sigmoid

Note: the ReLU function is scaled by $1 / 5$ in this example for ease of comparison. The function is scale invariant when used as an activation function in a neural network.

Grinnell College
Statistics

Remarks on Network Depth

- Neural networks first became popular in the 1980s, but in the 1990s methods like random forests, boosting, and support vector machines received far greater attention
- This was partly due to the computational challenges of neural networks and partly due to misunderstandings related to network depth

Remarks on Network Depth

- Neural networks first became popular in the 1980s, but in the 1990s methods like random forests, boosting, and support vector machines received far greater attention
- This was partly due to the computational challenges of neural networks and partly due to misunderstandings related to network depth
- In the 2000s, deep neural networks (ones with many hidden layers) were found to be very success for image classification
- In 2012, a deep neural network architecture named "AlexNet" led to a boom in deep learning by winning the ImageNet recognition challenge with accuracy of 84.7% (10.8% better than the nearest competitor)
- Network depth combined with the use of GPUs for efficient training on massive datasets led to this performance

Grinnell College
Statistics

Intuition on the Role of Hidden Layers

- Why do deeper networks perform better on certain types of data, such as images?

Intuition on the Role of Hidden Layers

- Why do deeper networks perform better on certain types of data, such as images?
- Intuitively, each hidden learning is learning features that are derived from the previous layer
- Hidden layer 1 learns patterns that are simple linear combinations of the inputs (perhaps vertical and horizontal edges of varying lengths and directions)
- Hidden layer 2 learns patterns that are linear combinations of the features identified in hidden layer 1 (perhaps simple shapes, curves, etc.)
- The next hidden layer can then learn patterns that are combinations of those shapes, curves, etc.
- At some point, the complexity of the current features provides enough information to make accurate predictions

Intuition on the Role of Hidden Layers

Deep Learning learns layers of features

Image Credit: https://www.datarobot.com/blog/a-primer-on-deep-learning/

Grinnell College

Closing Remarks

- Neural networks involve a lot of parameters and can learn very complex relationships, but this generally requires a lot of training data
- The simple networks we discussed today tend not to be commonly used
- They aren't well-equipped to handle spatial structures, which make them less effective at applications involving image/textual data
- They tend to overfit "flat" or "tabular" data to a greater extent than methods like random forests or boosted ensembles
- Next we'll learn about convolutional neural networks, a variation utilizes spatial relationships among features and excels in computer vision applications

