Hierarchical Clustering and Anomaly Detection via DBSCAN

Ryan Miller

- Unsupervised methods identify patterns in the data without specifying an outcome measure
 - k-means clustering finds groupings of similar data-points using prototypes
 - k-means is an example of partitional clustering, as it produces clusters without any overlap

Hierarchical Clustering (overview)

- Hierarchical clustering organizes data-points into a tree-like structure known as dendogram that stores a series of nested (overlapping) groupings
- There are two major types of hierarchical clustering algorithms:
 - 1. **Agglomerative** each data-point begins as its own cluster and pairs of clustered are merged using a *linkage criterion*
 - 2. **Divisive** all data-points begin in a single cluster that is recursively subdivided until each data-point is its own cluster
- We'll focus on agglomerative clustering since divisive clustering algorithms aren't currently offered in sklearn

Hierarchical Clustering (dendrogram example)

Dendrogram Example (agglomerative clustering of animals)

Three of the most popular ways to merge clusters are very straightforward:

- Single linkage find the minimum pairwise distance between data-points in different clusters and merge their clusters
- Complete linkage find the maximum pairwise distance between data-points in each pairing of clusters and merge the two clusters with the smallest maximum
- Average linkage find the average pairwise distances between points in each pairing of clusters and merge the two clusters with the smallest average distance

Agglomerative clustering - linkage

Diagram illustrating single, complete and average linkage:

The most common linkage criterion used in agglomerative clustering is *ward's linkage*, which minimizes Δ_{c_a,c_b} , the increase in sum of squared error accumulated by merging clusters:

$$\begin{aligned} & \Delta_{c_a,c_b} = SSC_{c_a,c_b} - SSS_{c_a,c_b} \\ & \bullet SSC_{c_a,c_b} = \sum_{i \in c_a \cup c_b} ||\mathbf{x}_i - \mathbf{\Psi}_{c_a \cup c_b}||^2 \\ & \bullet SSS_{c_a,c_b} = \sum_{i \in c_a} ||\mathbf{x}_i - \mathbf{\Psi}_{c_a}||^2 + \sum_{i \in c_b} ||\mathbf{x}_i - \mathbf{\Psi}_{c_b}||^2 \end{aligned}$$

Note that c_a and c_b index the data-points in belonging to two different clusters and Ψ_{c_a} denotes the center of cluster c_a .

Choosing a linkage criterion

- Single linkage tends to create large chains of one-at-a-time additions but can be good at identifying irregular patterns
- Complete linkage robust to outliers and tends to favor similarly sized clusters at each "level" of the dendrogram
- Average linkage lower variability than complete linkage but more impacted by outliers
- Ward's linkage clusters tend to be the most compact (desirable) but the method is also the most computationally expensive

Agglomerative clustering vs. k-means

- k-means forms spherical clusters (thus it excels with the "blobs" data) but struggles to identify irregularly shaped clusters (ie: "moons" data)
 - Agglomerative clustering tends to be more flexible when applied to unusual data sets
- Agglomerative clustering can also better handle outliers and do not involve random initialization
- The main downside of agglomerative clustering is its computational burden when n is large

DBSCAN

- DBSCAN finds clusters using two parameters: a radius, eps, and a minimum number of data-points, min_samples
 - The algorithm surrounds each data-point with a hypersphere (or a circle in 2 dimensions)
- These hyperspheres are used to label each data-point as one of three types: core points, border points, and noise
 - Core points contain at least min_samples neighbors within their hypersphere
 - Border points contain at least 1 neighbor within their hypersphere
 - Noise points are at least eps away from any other data-point
- Cluster membership can then be determined by connected density regions

DBSCAN

The diagram below illustrates DBSCAN:

Image Source: A Review of Super-Resolution Single-Molecule Localization Microscopy Cluster Analysis and Quantification_Methods

Outlier (anomaly) detection

- In statistics, an outlier is a data-point that is significantly far from other observations
 - A simple example is the "3 sigma rule", which will classify anything more than 3 standard deviations from the mean as an outlier
 - This amounts most extreme 0.3% of data-points under a normal model

Outlier (anomaly) detection

- In statistics, an outlier is a data-point that is significantly far from other observations
 - A simple example is the "3 sigma rule", which will classify anything more than 3 standard deviations from the mean as an outlier
 - This amounts most extreme 0.3% of data-points under a normal model
- DBSCAN provides a flexible method of outlier detection governed by the eps hyperparameter
 - This can be set using domain-specific knowledge, or tuned so that a certain percentage of the data is classified as outliers

Example (Chicago Divvy bikeshare data)

Standardizing the number of rides only:

Example (Chicago Divvy bikeshare data)

Standardizing the number of rides and day:

