Hierarchical Clustering and Anomaly Detection via
DBSCAN

Ryan Miller

22 Grinnell College
Statistics 1 / 14



Introduction

» Unsupervised methods identify patterns in the data without
specifying an outcome measure
> k-means clustering finds groupings of similar data-points using
prototypes
> k-means is an example of partitional clustering, as it produces
clusters without any overlap

22 Grinnell College

Statistics

2/14



Hierarchical Clustering (overview)

» Hierarchical clustering organizes data-points into a tree-like
structure known as dendogram that stores a series of nested
(overlapping) groupings

> There are two major types of hierarchical clustering algorithms:

1. Agglomerative - each data-point begins as its own cluster and
pairs of clustered are merged using a linkage criterion
2. Divisive - all data-points begin in a single cluster that is
recursively subdivided until each data-point is its own cluster
> We'll focus on agglomerative clustering since divisive clustering
algorithms aren’t currently offered in sklearn
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Hierarchical Clustering (dendrogram example)

Dendrogram Example (agglomerative clustering of animals)
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Agglomerative clustering - linkage

Three of the most popular ways to merge clusters are very
straightforward:

» Single linkage - find the minimum pairwise distance between
data-points in different clusters and merge their clusters

» Complete linkage - find the maximum pairwise distance
between data-points in each pairing of clusters and merge the
two clusters with the smallest maximum

> Average linkage - find the average pairwise distances between
points in each pairing of clusters and merge the two clusters
with the smallest average distance
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Agglomerative clustering - linkage

Diagram illustrating single, complete and average linkage:
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Agglomerative clustering (Ward linkage)

The most common linkage criterion used in agglomerative clustering
is ward’s linkage, which minimizes A, ,, the increase in sum of
squared error accumulated by merging clusters:

> Ac,c, =55Cc, c, = 555¢,.c )
> SSCCa,Cb = Ziecaucb (1% _wcaucb”
> Sssca,cb = Zieca [1x; _Wcé,”2 +Zi€cb [1x; _wa||2

Note that ¢, and ¢ index the data-points in belonging to two
different clusters and ¥, denotes the center of cluster c;.
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Choosing a linkage criterion

> Single linkage - tends to create large chains of one-at-a-time
additions but can be good at identifying irregular patterns

» Complete linkage - robust to outliers and tends to favor
similarly sized clusters at each “level” of the dendrogram

> Average linkage - lower variability than complete linkage but
more impacted by outliers

» Ward's linkage - clusters tend to be the most compact
(desirable) but the method is also the most computationally
expensive
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Agglomerative clustering vs. k-means

> k-means forms spherical clusters (thus it excels with the “blobs”
data) but struggles to identify irregularly shaped clusters (ie:
“moons” data)

> Agglomerative clustering tends to be more flexible when applied
to unusual data sets

» Agglomerative clustering can also better handle outliers and do
not involve random initialization

» The main downside of agglomerative clustering is its
computational burden when n is large
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DBSCAN

» DBSCAN finds clusters using two parameters: a radius, eps,
and a minimum number of data-points, min_samples
> The algorithm surrounds each data-point with a hypersphere (or
a circle in 2 dimensions)
> These hyperspheres are used to label each data-point as one of
three types: core points, border points, and noise
> Core points contain at least min_samples neighbors within
their hypersphere
> Border points contain at least 1 neighbor within their
hypersphere
> Noise points are at least eps away from any other data-point
» Cluster membership can then be determined by connected
density regions
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DBSCAN

The diagram below illustrates DBSCAN:

Molecular localizations
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Image Source: A Review of Super-Resolution Single-Molecule Localization Microscopy Cluster Analysis and
Quantification_Methods
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https://www.researchgate.net/publication/342141592_A_Review_of_Super-Resolution_Single-Molecule_Localization_Microscopy_Cluster_Analysis_and_Quantification_Methods
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Outlier (anomaly) detection

> In statistics, an outlier is a data-point that is significantly far
from other observations
> A simple example is the “3 sigma rule”, which will classify
anything more than 3 standard deviations from the mean as an
outlier
> This amounts most extreme 0.3% of data-points under a
normal model
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Outlier (anomaly) detection

> In statistics, an outlier is a data-point that is significantly far
from other observations
> A simple example is the “3 sigma rule”, which will classify
anything more than 3 standard deviations from the mean as an
outlier
> This amounts most extreme 0.3% of data-points under a
normal model

» DBSCAN provides a flexible method of outlier detection
governed by the eps hyperparameter
> This can be set using domain-specific knowledge, or tuned so
that a certain percentage of the data is classified as outliers
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Example (Chicago Divvy bikeshare data)

Standardizing the number of rides only:

eps =15
.
8 20000 . % .
= Outlier
= 15000 o s o £ % 4 { 3 3
° T ple e oo D o D) e &0
g 10000 oy . T A I‘ o !?;. e © FALSE
£ . M — oY AR . * TRUE
£ s000 s & ), ‘.ﬁ ot
z L) . (75 i 4 .
g 34 ¢ 1N NS NS > > NS &> & >
§ s s X & 1 & Q/Q & & 1 ,y\,»
N N & Q& & &> & & 1 1 o° 1
& N & N N N & & NG NG NG NG
LS L 5 L5 LS L3 LS 5 L5 B L3 L
eps=1.7
-
8 20000 . Q . A
= .ﬁo % Outlier
« 15000 o® £ A L)
° 3 '.?."' Y SevT, 33 “ S8 Se® © FALSE
$ 10000 Ny 708 . . 180 R A ¥
£ H : S, o 8, o o o TRUE
: Nagera o Cog g
zZ L) . (¥ i 4 .
e be\/ > e e e e e e e e e
/\;{‘« N “/Q‘b o~ of& %’Q‘O o e %’0 o_,/& g/é’ q/@’ m\’
& & & N NG N N & NG NG NG &
L L5 5 5 L LS L5 5 5 5 LS L

22 Grinnell College

Statistics

13/14



Example (Chicago Divvy bikeshare data)

Standardizing the number of rides and day:

eps = 0.14
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