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Introduction

Ï Unsupervised methods identify patterns in the data without
specifying an outcome measure

Ï k-means clustering finds groupings of similar data-points using
prototypes

Ï k-means is an example of partitional clustering, as it produces
clusters without any overlap
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Hierarchical Clustering (overview)

Ï Hierarchical clustering organizes data-points into a tree-like
structure known as dendogram that stores a series of nested
(overlapping) groupings

Ï There are two major types of hierarchical clustering algorithms:
1. Agglomerative - each data-point begins as its own cluster and

pairs of clustered are merged using a linkage criterion
2. Divisive - all data-points begin in a single cluster that is

recursively subdivided until each data-point is its own cluster
Ï We’ll focus on agglomerative clustering since divisive clustering

algorithms aren’t currently offered in sklearn
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Hierarchical Clustering (dendrogram example)
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Dendrogram Example (agglomerative clustering of animals)
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Agglomerative clustering - linkage

Three of the most popular ways to merge clusters are very
straightforward:

Ï Single linkage - find the minimum pairwise distance between
data-points in different clusters and merge their clusters

Ï Complete linkage - find the maximum pairwise distance
between data-points in each pairing of clusters and merge the
two clusters with the smallest maximum

Ï Average linkage - find the average pairwise distances between
points in each pairing of clusters and merge the two clusters
with the smallest average distance
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Agglomerative clustering - linkage

Diagram illustrating single, complete and average linkage:
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Agglomerative clustering (Ward linkage)

The most common linkage criterion used in agglomerative clustering
is ward’s linkage, which minimizes ∆ca ,cb , the increase in sum of
squared error accumulated by merging clusters:

Ï ∆ca ,cb = SSCca ,cb −SSSca ,cbÏ SSCca ,cb =∑
i∈ca∪cb ||xi −Ψxca∪cb ||2

Ï SSSca ,cb =∑
i∈ca ||xi −Ψxca ||2 +

∑
i∈cb ||xi −Ψxcb ||2

Note that ca and cb index the data-points in belonging to two
different clusters and Ψxca denotes the center of cluster ca.
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Choosing a linkage criterion

Ï Single linkage - tends to create large chains of one-at-a-time
additions but can be good at identifying irregular patterns

Ï Complete linkage - robust to outliers and tends to favor
similarly sized clusters at each “level” of the dendrogram

Ï Average linkage - lower variability than complete linkage but
more impacted by outliers

Ï Ward’s linkage - clusters tend to be the most compact
(desirable) but the method is also the most computationally
expensive
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Agglomerative clustering vs. k-means

Ï k-means forms spherical clusters (thus it excels with the “blobs”
data) but struggles to identify irregularly shaped clusters (ie:
“moons” data)

Ï Agglomerative clustering tends to be more flexible when applied
to unusual data sets

Ï Agglomerative clustering can also better handle outliers and do
not involve random initialization

Ï The main downside of agglomerative clustering is its
computational burden when n is large
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DBSCAN

Ï DBSCAN finds clusters using two parameters: a radius, eps,
and a minimum number of data-points, min_samples

Ï The algorithm surrounds each data-point with a hypersphere (or
a circle in 2 dimensions)

Ï These hyperspheres are used to label each data-point as one of
three types: core points, border points, and noise

Ï Core points contain at least min_samples neighbors within
their hypersphere

Ï Border points contain at least 1 neighbor within their
hypersphere

Ï Noise points are at least eps away from any other data-point
Ï Cluster membership can then be determined by connected

density regions
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DBSCAN

The diagram below illustrates DBSCAN:

Image Source: A Review of Super-Resolution Single-Molecule Localization Microscopy Cluster Analysis and
Quantification_Methods
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https://www.researchgate.net/publication/342141592_A_Review_of_Super-Resolution_Single-Molecule_Localization_Microscopy_Cluster_Analysis_and_Quantification_Methods
https://www.researchgate.net/publication/342141592_A_Review_of_Super-Resolution_Single-Molecule_Localization_Microscopy_Cluster_Analysis_and_Quantification_Methods


Outlier (anomaly) detection

Ï In statistics, an outlier is a data-point that is significantly far
from other observations

Ï A simple example is the “3 sigma rule”, which will classify
anything more than 3 standard deviations from the mean as an
outlier

Ï This amounts most extreme 0.3% of data-points under a
normal model

Ï DBSCAN provides a flexible method of outlier detection
governed by the eps hyperparameter

Ï This can be set using domain-specific knowledge, or tuned so
that a certain percentage of the data is classified as outliers
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Example (Chicago Divvy bikeshare data)

Standardizing the number of rides only:
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Example (Chicago Divvy bikeshare data)

Standardizing the number of rides and day:
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