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Review

Consider the basic linear regression model:

Y =wo +w1X1+w2X2+ . . .+wpXp +ϵ

We’ve previously estimated w, the vector of weights, by optimizing
the following cost function:

Cost= 1
n

n∑
i=1

(yi − ŷi)2 = 1
n (y−Xŵ)T (y−Xŵ)
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Regularized Regression

Regularized regression adds a penalty term to the cost function that
shrinks weight estimates towards zero:

Cost= 1
n (y−Xŵ)T (y−Xŵ)+Pα(ŵ)

Ï P() is a penalty function involving α, a regularization
parameter that controls the trade-off between each term in
the cost function
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Example

When the regularization parameter, α, is large, the penalty term
dominates the cost function and weights are estimated to be zero.
When alpha is zero, cost function reduces to squared error loss.
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Benefits of Regularization

Ï Intuitively, the premise behind regularization is that small
weights should occur more frequently than large weights when
many predictors are considered

Ï Thus, using penalization to discourage larger estimated weights
can prevent overfitting

Ï In 1970, Hoerl and Kennard proved that ridge regression (a
type of regularized regression) can always produce a lower
out-of-sample RMSE than ordinary (unpenalized) regression
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Benefits of Regularization

Mathematically, it’s possible to decompose mean-squared error
(MSE) into bias and variance terms. Here’s a heuristic look at how
these components might look as α is varied:
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Ridge Regression

Ridge regression uses the penalty function: Pα(w)=α
∑p

j=1 w2
i

In matrix form, the Ridge regression cost function looks like:

Cost= 1
n (y−Xŵ)T (y−Xŵ)+αŵT ŵ

Ï ŵT ŵ is the squared L2 Norm of the weight vector (or ||ŵ||22),
so the ridge penalty is often called L2 regularization

Ï The meaning of α is entirely relative, so sometimes you’ll see
the cost written using Pα(w)= 1

2nα
∑p

j=1 w2
i
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Ridge Regression

Similar to ordinary linear regression, minimizing the ridge regression
cost function has a closed-form solution:

ŵ= (XT X+αI)−1XT y

The method gets its name from the “ridge” added to the diagonal
of XT X prior to inversion
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Choosing α

Ï In penalized regression, α is a tuning parameter, with different
values leading to different weight estimates

Ï Larger values of α shrink the weights closer to zero (introducing
more bias while reducing variance)

Ï When α= 0, the ridge regression estimates are the same those
of ordinary linear regression

Ï Because penalization is proportional to the magnitude of wj , it
is important to standardize each variable as a pre-processing
step when using regularization
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Choosing α (example)

Below are results for data that uses pollution and demographic
variables of 60 US metro areas to their predict age-adjusted
mortality:
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Lasso

Ï The ridge penalty provides stability (ie: reduces variance) at
the expense of adding bias

Ï However, it doesn’t truly reduce the complexity of the model
(the number of non-zero weights is the same, regardless of the
amount of penalization)

Ï The lasso (least absolute shrinkage and selection operator)
addresses this shortcoming by promoting sparsity in the
estimated weight vector

Ï The lasso penalty function is: Pα(w)=α
∑p

j=1 |wi |
Ï Recognize that the absolute value function is not strictly

differentiable at its minimum
Ï This promotes weight estimates of exactly zero (sparsity)
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Lasso

Ï To better understand why the lasso penalty promotes sparse
weight estimates, we can view minimizing the lasso cost
function as a constrained optimization problem

Ï That is, the lasso’s estimate of w minimizes 1
n

∑n
i=1(yi −xT

i w)2

subject to the constraint ∑p
j=1 |wj | < c where c describes a fixed

amount of penalization (a function of α)
Ï For comparison, the ridge estimate is similar but with the

constraint ∑p
j=1 w2

j < c
Ï The next slide provides a geometric illustration of why the lasso

constraint promotes sparsity, but the ridge constraint does not
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Lasso vs. Ridge

Estimates satisfying ∑p
j=1 |wj | < c exist within a diamond, while

those satisfying ∑p
j=1 w2

j < c exist within an ellipse.

image credit: https://www.researchgate.net/figure/Plot-demonstrating-the-Sparsity-caused-by-the-LASSO-Penalty-
The-plot-shows-the_fig1_317357840
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Lasso

For pollution example, lasso achieves a minimum cross-validated
mean-squared error of around 1570, while ridge regression’s
minimum error (shown in an earlier slide) is around 1650 for these
data.
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Ridge Regression and Multicollinearity

Ï Consider data where yi = 1.5∗xi ,1−0.75∗xi ,2+ϵ where X1 and
X2 have a correlation of 0.95

Ï lasso favors a single representative, while ridge will distribute
the weight estimates in a more balanced manner:
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Final Remarks on Regularization

Ï L1 (lasso) and L2 (ridge) regularization can be used in many
different machine learning models to help balance the
bias-variance trade-off

Ï By default, the implementation of logistic regression in
sklearn includes L2 regularization to promote stable weight
estimates

Ï In this regard, regularization can be used to address the
“perfect separation” issue that arose in our previous lab
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