
Linear Models for Regression Tasks

Ryan Miller

1 / 14



Outline

1. Basic review of linear regression
2. Parameters and optimization via gradient descent

2 / 14



Linear Regression

Linear regression is a supervised learning approach that models a
numeric outcome as a linear combination of predictors:

Y =wo +w1X1+w2X2+ . . .+wpXp +ϵ

Using matrix notation:
y=Xw+ϵ

Ï In statistics, the vector of weights, w, are called the slopes
(with with w0 being the intercept)

Ï In machine learning, the intercept w0, is often called the bias
(or the y-axis offset)

3 / 14



Parameters and Cost Functions

For linear regression (and many other methods) the data are used to
estimate w. This is done using a cost function:

Cost = 1
n

n∑
i=1

(yi − ŷi)2

This function, squared error cost, expresses how close the model’s
predictions are to their corresponding observed values. In matrix
notation:

Cost = 1
n (y−Xŵ)T (y−Xŵ)

4 / 14



Optimizing the Weights

Ï The optimal set of weights are those that minimize the cost
function

Ï As you might expect, we can use calculus to help us perform
this minimization

Ï Before jumping in, let’s first do some algebraic rearrangement:

Cost = 1
n (y−Xŵ)T (y−Xŵ)

= 1
nyT y+ 1

n (−2yT Xŵ+ (Xŵ)T Xŵ)
= 1

nyT y+ 1
n (−2yT Xŵ+ ŵT XT Xŵ)

5 / 14



Optimizing the Weights

Ï In calculus, the gradient is the vector of partial derivatives
with respect to each unknown variable in a function

Ï For linear regression, these unknowns are the model’s weights
(coefficients)

Ï While it might not be immediately obvious, we can solve for a
closed-form expression that minimizes the squared error cost
function (the least squares solution)

ŵ= (XT X)−1XT y

Ï For educational purposes, we will ignore this closed-form
solution and explore alternative methods for estimating an
optimal set of weights

6 / 14



Gradient Descent

Ï The derivative is the slope of a function at a particular location,
so we can use the gradient to gradually move towards the
minimum of any (convex) cost function

Ï The gradient descent algorithm works to minimize the cost
function using sequential updates:

ŵ(j) = ŵ(j−1) −α ∂Cost
∂w

(
ŵ(j−1))

Ï α is a tuning parameter that controls the learning rate, or how
quickly to update the weight vector at each iteration

Ï A small α requires many iterations for the algorithm to converge
(reach the minimum)

Ï A large α can overshoot the minimum, which can also cause
convergence issues

7 / 14



Some Math

Recall that we can express the linear regression cost function as:

Cost = 1
nyT y+ 1

n (−2yT Xŵ+ ŵT XT Xŵ)

Thus, the gradient is:

Gradient = −2
n XT (y−Xŵ)

And our gradient descent updates look like:

ŵ(j) = ŵ(j−1)+ 2
nXT (y−Xŵ(j−1))

8 / 14



Illustration

Ï To illustrate gradient descent, let’s look at a very simple special
case of linear regression involving no bias term (intercept) and
a single weight parameter:

Y = 2.5X1+ϵ

Ï For this model, the squared error cost function is:

Cost = 1
n (y−xT

1 ŵ1)T (y−xT
1 ŵ1)

9 / 14



Learning Rates

The graphs below illustrate 10 iterations of gradient descent for our
simple, one-parameter regression example (starting at w (0)

1 = 0):

−1 0 1 2 3 4 5

0
2

4
6

8
10

Learning Rate of 0.1

w1

C
os

t

−1 0 1 2 3 4 5

0
2

4
6

8
10

Learning Rate of 0.5

w1

C
os

t

−1 0 1 2 3 4 5

0
2

4
6

8
10

Learning Rate of 0.8

w1

C
os

t

Generally, gradient descent algorithms are programmed to end once
the estimated parameters change by no more than an acceptable
tolerance (a small predetermined constant)

10 / 14



Stochastic Gradient Descent

Ï In our simple example, computing the gradient at each iteration
required two vector-product calculations: yT x1 and xT

1 x1
Ï Fortunately, these can both be computed ahead of time (rather

than at each iteration) which makes algorithm very
computationally efficient

Ï For other models, the parameter vector is involved in
vector-product calculations within the gradient, so these
vector-product calculations must be redone at each iteration

Ï In big-data settings, this computational challenge (among
others) has led to the popularity of stochastic gradient
descent

11 / 14



Stochastic Gradient Descent

Stochastic Gradient Descent uses the same framework as
gradient descent (updating parameters using the gradient to
improve the cost function) but it does so using a subset of training
data (or even just one data-point) at each iteration:

−1 0 1 2 3 4 5

0
2

4
6

8
10

Batches of size 10, alpha = 0.1

w1

C
os

t

0 10 20 30 40 50

0
1

2
3

4

Cost by iter

Iteration

C
os

t

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Estimated w1 by iter

Iteration
w

1

12 / 14



Stochastic Gradient Descent

Even using only one data-point each iteration, stochastic gradient
descent converges to the optimal value of w1 (at least on average):

−1 0 1 2 3 4 5

0
2

4
6

8
10

Only one, alpha = 0.1

w1

C
os

t

0 10 20 30 40 50 60

0
1

2
3

4
5

6

Cost by iter

Iteration

C
os

t

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Estimated w1 by iter

Iteration

w
1

Ï This can be a huge computational benefit in big-data settings
for models with complex gradients

Ï The algorithm’s “noisy” behavior can help avoid local minima

13 / 14



Conclusion

This presentation briefly introduced linear regression, a modeling
framework I’m assuming you’re already familiar with:

y=Xw+ϵ

Compared with other models we’ve discussed:

Ï Linear regression involves a structured set of parameters that
must be learned from the data

Ï Gradient descent (or stochastic gradient descent) can be used
to learn these parameters

14 / 14


