Linear Models for Regression Tasks

Ryan Miller

- 1. Basic review of linear regression
- 2. Parameters and optimization via gradient descent

Linear Regression

Linear regression is a supervised learning approach that models a numeric outcome as a linear combination of predictors:

$$Y = w_o + w_1 X_1 + w_2 X_2 + \ldots + w_p X_p + \epsilon$$

Using matrix notation:

$$\mathbf{y} = \mathbf{X}\mathbf{w} + \epsilon$$

- In statistics, the vector of weights, w, are called the slopes (with with w₀ being the intercept)
 - In machine learning, the intercept w₀, is often called the bias (or the y-axis offset)

For linear regression (and many other methods) the data are used to estimate \mathbf{w} . This is done using a **cost function**:

$$Cost = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

This function, *squared error cost*, expresses how close the model's predictions are to their corresponding observed values. In matrix notation:

$$Cost = \frac{1}{n} (\mathbf{y} - \mathbf{X}\hat{\mathbf{w}})^T (\mathbf{y} - \mathbf{X}\hat{\mathbf{w}})$$

Optimizing the Weights

- The optimal set of weights are those that minimize the cost function
 - As you might expect, we can use calculus to help us perform this minimization
- Before jumping in, let's first do some algebraic rearrangement:

$$Cost = \frac{1}{n} (\mathbf{y} - \mathbf{X}\hat{\mathbf{w}})^T (\mathbf{y} - \mathbf{X}\hat{\mathbf{w}})$$

= $\frac{1}{n} \mathbf{y}^T \mathbf{y} + \frac{1}{n} (-2\mathbf{y}^T \mathbf{X}\hat{\mathbf{w}} + (\mathbf{X}\hat{\mathbf{w}})^T \mathbf{X}\hat{\mathbf{w}})$
= $\frac{1}{n} \mathbf{y}^T \mathbf{y} + \frac{1}{n} (-2\mathbf{y}^T \mathbf{X}\hat{\mathbf{w}} + \hat{\mathbf{w}}^T \mathbf{X}^T \mathbf{X}\hat{\mathbf{w}})$

Optimizing the Weights

- In calculus, the gradient is the vector of partial derivatives with respect to each unknown variable in a function
 - For linear regression, these unknowns are the model's weights (coefficients)
- While it might not be immediately obvious, we can solve for a closed-form expression that minimizes the squared error cost function (the least squares solution)

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

For educational purposes, we will ignore this closed-form solution and explore alternative methods for estimating an optimal set of weights

Gradient Descent

- The derivative is the slope of a function at a particular location, so we can use the gradient to gradually move towards the minimum of any (convex) cost function
 - The gradient descent algorithm works to minimize the cost function using sequential updates:

$$\hat{\mathbf{w}}^{(j)} = \hat{\mathbf{w}}^{(j-1)} - \alpha \frac{\partial \text{Cost}}{\partial \mathbf{w}} (\hat{\mathbf{w}}^{(j-1)})$$

- α is a tuning parameter that controls the *learning rate*, or how quickly to update the weight vector at each iteration
 - A small α requires many iterations for the algorithm to converge (reach the minimum)
 - A large α can overshoot the minimum, which can also cause convergence issues

Some Math

Recall that we can express the linear regression cost function as:

$$Cost = \frac{1}{n} \mathbf{y}^T \mathbf{y} + \frac{1}{n} (-2\mathbf{y}^T \mathbf{X} \hat{\mathbf{w}} + \hat{\mathbf{w}}^T \mathbf{X}^T \mathbf{X} \hat{\mathbf{w}})$$

Thus, the gradient is:

$$Gradient = \frac{-2}{n} \mathbf{X}^T (\mathbf{y} - \mathbf{X}\hat{\mathbf{w}})$$

And our gradient descent updates look like:

$$\hat{\mathbf{w}}^{(j)} = \hat{\mathbf{w}}^{(j-1)} + \frac{2}{n} \mathbf{X}^T (\mathbf{y} - \mathbf{X} \hat{\mathbf{w}}^{(j-1)})$$

To illustrate gradient descent, let's look at a very simple special case of linear regression involving no bias term (intercept) and a single weight parameter:

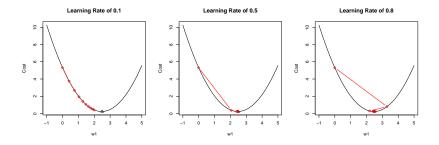
$$Y = 2.5X_1 + \epsilon$$

For this model, the squared error cost function is:

$$Cost = \frac{1}{n} (\mathbf{y} - \mathbf{x}_1^T \hat{w}_1)^T (\mathbf{y} - \mathbf{x}_1^T \hat{w}_1)$$

Learning Rates

The graphs below illustrate 10 iterations of gradient descent for our simple, one-parameter regression example (starting at $w_1^{(0)} = 0$):



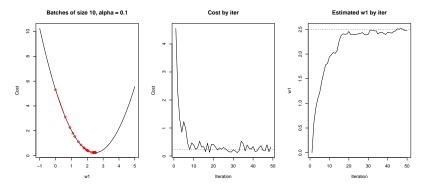
Generally, gradient descent algorithms are programmed to end once the estimated parameters change by no more than an acceptable tolerance (a small predetermined constant)

Stochastic Gradient Descent

- In our simple example, computing the gradient at each iteration required two vector-product calculations: y^Tx₁ and x₁^Tx₁
 - Fortunately, these can both be computed ahead of time (rather than at each iteration) which makes algorithm very computationally efficient
- For other models, the parameter vector is involved in vector-product calculations within the gradient, so these vector-product calculations must be redone at each iteration
 - In big-data settings, this computational challenge (among others) has led to the popularity of stochastic gradient descent

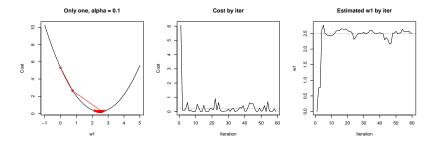
Stochastic Gradient Descent

Stochastic Gradient Descent uses the same framework as gradient descent (updating parameters using the gradient to improve the cost function) but it does so using a *subset of training data* (or even just one data-point) at each iteration:



Stochastic Gradient Descent

Even using *only one* data-point each iteration, stochastic gradient descent converges to the optimal value of w_1 (at least on average):



- This can be a huge computational benefit in big-data settings for models with complex gradients
- The algorithm's "noisy" behavior can help avoid local minima

This presentation briefly introduced *linear regression*, a modeling framework I'm assuming you're already familiar with:

 $\mathbf{y} = \mathbf{X}\mathbf{w} + \boldsymbol{\epsilon}$

Compared with other models we've discussed:

- Linear regression involves a structured set of parameters that must be learned from the data
 - Gradient descent (or stochastic gradient descent) can be used to learn these parameters

