
Ensembles and Random Forests

Ryan Miller

1 / 10



Limitations of Decision Trees

Ï Decision trees are easy to interpret and don’t require much
computation to train

Ï However, capturing a complex relationship using a decision tree
requires the tree be deep (lots of splits)

Ï This is problematic because trees exhibit high variance and are
prone to overfitting

Ï This presentation will focus on the random forest algorithm, a
well-known ensemble model
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Bagging

Random forests rely upon bagging, or “bootstrap aggregation”, to
construct a large number of decision trees:

Image credit: https://hudsonthames.org/bagging-in-financial-machine-learning-sequential-bootstrapping-python/
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Ensembles

Ï Bagging produces an ensemble model comprised of many
different base models

Ï Each base model contributes towards a final prediction, either
by majority/weighted voting (classification) or simple/weighted
averaging (regression)

Ï Random forests are an ensemble model built using bagging,
where each base model is a decision tree

Ï What would happen if bagging were not used?

4 / 10



Ensembles

Ï Bagging produces an ensemble model comprised of many
different base models

Ï Each base model contributes towards a final prediction, either
by majority/weighted voting (classification) or simple/weighted
averaging (regression)

Ï Random forests are an ensemble model built using bagging,
where each base model is a decision tree

Ï What would happen if bagging were not used?

4 / 10



Random Forest

Ï Bagging is one strategy used by random forests to address the
limitations of a single decision tree

Ï A second strategy is predictor sampling, or the random
selection of limited candidate pool of predictors to be
considered at each split

Ï What might happen if predictor sampling were not used?
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Random Forest (depth = 2)
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Random Forest Classifier (depth = 2)
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Random Forest (depth = 3)
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Random Forest Classifier (depth = 3)
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Single Decision Tree (depth = 3)
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Decision Tree Classifier
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Final Remarks

Ï Random forests will generally offer better predictive
performance than a single decision tree

Ï The primary downside is that random forests are not easily
interpretable

Ï Important tuning parameters are max_depth,
min_samples_split, and max_features (the number or
fraction of predictors considered at each split)

Ï The number of trees in the forest is also important, but
including more trees past a certain point will not improve the
ensemble.
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Final Remarks (cont.)

Ï max_depth and min_samples_split help prevent base
models from being overfit

Ï By using an ensemble approach, random forests can be flexible
without using deep trees

Ï Thus, relative to a single decision tree, you should consider
using a smaller max_depth and larger min_samples_split

Ï max_features governs the degree of correlation between base
models

Ï Smaller values reduce correlations between trees (at the expense
of predictive power within individual trees)

Ï Default recommendations are pp for classification and p/3 for
regression
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