
Introduction to Recurrent Neural Networks

Ryan Miller

1 / 18



Introduction

Ï Convolutional neural networks are designed to exploit the
spatial structures of images (or similarly formatted data)

Ï Recurrent neural networks are designed exploit the sequential
structures of certain data types

Ï For example, documents are a sequence of words with
meaningful relative positions

Ï Time-series, such as financial data, or recorded speech or music
are other examples

2 / 18



Recurrence

In general terms, a recurrence relationship involves the form:

ht = fw (ht−1,xt)

Ï ht is a “hidden state” at sequence position t
Ï fw is a function involving weight parameters
Ï xt is the input at position t

The weight parameters are shared across sequence positions (time
steps).

3 / 18



Basic Architecture

Below is the basic architecture of a simple recurrent neural network:

Ï Each sequence position, indexed by t, involves a hidden state
and an output, y<t>

Ï Hidden states are a function of the previous hidden state and
an input x<t>

4 / 18



Details

At time step t, the hidden state is determined by:

a<t> = g1(Waaa<t−1>+Wax x<t>+ba)

And output is determined by:

y<t> = g2(Wyaa<t>+by )

Ï The weight matrices, Waa, Wax , and Wya, and biases, ba and
by , are shared at every position

Ï g1 and g2 are activation functions (ie: ReLU, sigmoid, etc.)

5 / 18



Simple Example

Ï Suppose our data are a sequence of characters and our model
is designed to predict the next character in the sequence

Ï For simplicity, we’ll assume the only characters in this model’s
vocabulary are “h”, “e”, “l”, and “o”

Ï Each input is a one-hot vector representing encoding that letter
Ï For example, “h” = [1,0,0,0], e= [0,1,0,0], etc.

6 / 18



Simple Example

Consider the input sequence: “hello”

Ï The first input is the vector x<1> = [1,0,0,0]
Ï We’ll define the initial hidden state as a<0> = [0,0,0,0]

Thus, the input h produces the hidden state:

a<1> = g1(Waa ∗ [0,0,0,0]+Wax ∗ [1,0,0,0]+ba)

Then this hidden state leads to the output:

y<1> = g2(Wyaa<1>+by )

7 / 18



Simple Example (with numbers)

Given the weights and bias below, what happens when “h” is input?
(assuming g1() is the sigmoid function)

Waa =


1 1 −1 −1
1 0 0 0
0 −1 1 0
0 0 −1 0.5



Wax =


0 0 1 −1
1 1 −1 0
−1 0 1 0
0 0 1 0.5


ba = [0,0,0,0]

8 / 18



Simple Example (with numbers)

a<1> = g1

(
0 0 1 −1
1 1 −1 0
−1 0 1 0
0 0 1 0.5

∗ [1,0,0,0]
)

or

a<1> = g1
(
[0,1,−1,0]

)= [0.5,0.73,0.27,0.5]

Next, what does is a<1> used for in our network?

9 / 18



Simple Example (with numbers)

One place where a<1> is used is the generation of the predicted
output at position t. Let’s suppose:

Way =


0 1 0 −1.5
1 0 0 0
0 −0.5 1 0
0 0 −1 1


and

by = [0,0,0,0]

How do we find this output?

10 / 18



Simple Example (with numbers)

We have:

y<1> = g2

(
0 1 0 −1.5
1 0 0 0
0 −0.5 1 0
0 0 −1 1

∗ [0.5,0.73,0.27,0.5]
)

or

y<1> = g2
(
[−0.02,0.5,−0.095,0.23]

)

11 / 18



Simple Example (with numbers)

Ï If g2() is the softmax function, the predicted output is “e”
(which happens to be correct)

Ï The associated probability is given by
exp(0.5)

exp(−0.02)+exp(0.5)+exp(−0.095)+exp(0.23) = 0.34

12 / 18



Model Training

Similar to previous neural network architectures we’ve discussed,
training a recurrent neural network consists of two important steps:

Ï Forward-propagation of examples to calculate the cost and
other intermediate quantities

Ï Back-propagation to find the gradient and update the
network’s weights and biases

13 / 18



Model Training

The cost, at time-point t, is a function (such as cross-entropy loss)
of y<t>:

y<t> = g2(Wya ∗ [g1([Waa,Wax ]∗ [x<t>,a<t−1>]+ba)]+by )

Ï Here, we’ve contactenated (stacked) matrices Waa and Wax
and the vectors x<t> and a<t−1> to simplify the form of the
model (since we can say Wc = [Waa,Wax ])

Ï We should note that a<t−1> is a function of W = [Waa,Wax ],
so the chain rule in back-propagation will lead us to work
backwards through time

We will not cover the details of gradient calculations for these
models.

14 / 18



Applications

With minor modifications, the basic model architecture we’ve
covered can be adapted to a wide range of applications, including:

1. Generative Models - a single input predicts a sequence of
output (one-to-many)

2. Sequence Classification Models - a sequence input predicts a
single output (many-to-one)

3. Named Entity Recognition Models - a sequence input predicts
sequence output (many-to-many)

15 / 18



Generative Models

Suppose we’ve trained an RNN model and we provide a single input
(perhaps the first letter or word in sequence). We can use the
prediction ŷ<1> as the next sequential input

Notice how this architecture generates a sequential response from a
single input.

16 / 18



Sentiment Classification

Suppose we’re only interested in a single output corresponding to
the entire input sequence:

Ï This model might be used to classify the sentiment of a text
Ï The architecture is similar to our example, except the weights

in Wya will be learned differently during training

17 / 18



Named Entity Recognition Models

Suppose we’d like to make use of every predicted output in our
original model:

We used this architecture in our example, it can also be used to
classify words as nouns, verbs, or adjectives while considering their
position in a sentence.

18 / 18


