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Introduction

Ï Consider a binary classification task
Ï Support Vector Machines (SVM) try to find a plane that

separates the two classes in the space of our predictive features
Ï If no such plane exists, there are two possible solutions

Ï Relaxing what we mean by “separate”
Ï Expanding our feature space to facilitate separation
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Hyperplanes

Ï A hyperplane is defined by a set of coefficients:

f (X)=β0+β1X1+β2X2+ . . .+βpXp

Ï Recognize that multivariable linear regression is a hyperplane
Ï This hyperplane represents the expected value of a continuous

outcome, Y , estimated via least squares for a set of predictors

Ï Support vector machines seek a separating hyperplane
Ï f (X)> 0 for one class, and f (X )< 0 for the other class
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Separation in low dimensions

Consider 2 features, X1 and X2, and a binary outcome. It might be
possible to draw several separating hyperplanes:

Which of these hyperplanes is the best classifier?
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The maximum margin classifier

A hard margin SVM finds the “maximum margin” hyperplane:

This plane represents the “widest street” between classes, and it is
characterized by “support vectors”, or training data-points that
would change this hyperplane if removed

5 / 17



Finding the maximum margin classifier

Ï Consider the constraint: ∑p
j=1β

2
j = 1, which normalizes how our

hyperplane is defined
Ï This won’t impact the direction of the plane, as {β1 = 1,β2 = 1}

and {β1 = 3,β2 = 3} have the same orientation
Ï SVMs find β1, . . . ,βp which maximize M in the expression:

yi(β0+β1xi ,1+β2xi ,2+βpxi ,p)≥M
Ï Here the binary outcome, yi , is encoded as +1 or -1, so the left

side of this expression is the distance from the current
hyperplane to the i th data-point
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Finding the maximum margin classifier

Ï The coefficients defining the SVM classifier can be found using
the Lagrangian multiplier method

Ï We will not cover this method in this course (as SVMs are the
only classifier we’ll study that use it)

Ï If you’re interested in the mathematical details, I recommend
Robert Berwick’s (of MIT) “An Idiot’s guide to support vector
machines”
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Non-separable data (soft margin)

Ï If the data are non-seperable, we can relax the maximum
margin approach to find a soft margin classifier:

Ï Now we aim to find β1, . . . ,βp that maximize M where
yi(β0+β1xi ,1+β2xi ,2+βpxi ,p)≥M(1−ϵi)

Ï Subject to ϵ≥ 0 and ∑n
i=1 ϵi < s

Ï ϵi = 0 if a point is on the correct side of the margin
Ï 0< ϵi < 1 if a point is within the margin
Ï ϵi > 1 if a point is on the wrong side of the margin

Ï s is controls the total amount of “slack” that is allowed, with
larger values allowing for more “slack”

Ï As s decreases the tolerance for data-points being on the wrong
side of the hyperplane diminishes
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Soft-margin examples

As s decreases (left to right), the margin M decreases:

A larger s yields a more stable classifier, so the bias-variance
trade-off can be manipulated via the value of s.
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Feature expansion

Ï Consider the features: {X1,X2}, and recall that the SVM
classifier finds a decision boundary (separating hyperplane) of
the form β0+β1X1+β2X2

Ï We could apply transformations to create a new set of features:
{X1,X2,X2

1 ,X2
2 ,X1X2}

Ï Now the decision boundary would have the form:
β0 +β1X1 +β2X2 +β3X2

1 +β4X2
2 +β5X1X2

Ï This corresponds to a non-linear boundary in the original
feature space

Ï Kernel functions allow for computationally efficient mappings of
the original features to higher dimensions for the purpose of
finding a non-linear decision boundary
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Inner products

To fully understand kernel functions, we’ll need to be familiar with
the inner product:

inner product of x1,x2 = xT
1 x2

=
p∑

j=1
x1jx2j

We will not go too far into the details, but SVM estimation can be
re-framed in terms of the inner product of each pair of data-points:

f (x)=β0+
n∑

i=1
αixT xi
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Inner products (cont.)

In the previous formulation (repeated below), it turns out that many
of the α̂i are zero

f (x)=β0+
n∑

i=1
αixT xi

Ï This is a collection of
(n
2
)

inner products, corresponding to n
different αi parameters, but only those involving points on or
inside the margin have non-zero values (ie: α̂i ̸= 0)

Ï Various feature expansion approaches are more easily handled
using this framework using the proper Kernel function K ()

f (x)=β0 +
n∑

i=1
αiK (x,xi )

12 / 17



Kernel functions

1. Linear kernel - K (x,xi)= xT xi
2. Polynomial kernel - K (x,xi)= (γxT xi +1)d

Ï γ controls the influence of individual training samples, d is the
degree of the polynomial expansion

3. Radial Basis Function (RBF) kernel -
K (x,xi)= exp(−γ||x−xi ||2)

Ï γ controls the influence of individual training samples
4. Sigmoid kernel - K (x,xi)= tanh(γxT xi + r)

Ï γ controls the influence of individual training samples, r is a bias
term that allows the transformation to be shifted up or down
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Polynomial kernel (d = 3, γ= 2)
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RBF kernel
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Sigmoid kernel
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Practical guidance

Ï SVMs treat each feature equally, so standardization is an
important data preparation step

Ï The kernel function (type of feature expansion) and “slack”
parameter can be tuned via cross-validation to achieve optimal
classification performance

Ï sklearn represents “slack” using a parameter C that is
inversely proportional to what we called s

Ï Other hyperparameters affiliated with certain kernel functions,
such as \gamma can also be tuned in this manner

Ï Support vector regression is also implemented in sklearn, the
SVM lab will briefly cover this method

Ï SVMs also have been generalized to multi-class tasks, and use a
one-vs-one scheme in sklearn

17 / 17


