Support Vector Machines

Ryan Miller

Grinnell College

Introduction

- Consider a binary classification task
- Support Vector Machines (SVM) try to find a plane that separates the two classes in the space of our predictive features
- If no such plane exists, there are two possible solutions
- Relaxing what we mean by "separate"
- Expanding our feature space to facilitate separation

Hyperplanes

- A hyperplane is defined by a set of coefficients:

$$
f(\mathbf{X})=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\beta_{p} X_{p}
$$

- Recognize that multivariable linear regression is a hyperplane
- This hyperplane represents the expected value of a continuous outcome, Y, estimated via least squares for a set of predictors
- Support vector machines seek a separating hyperplane
- $f(\mathbf{X})>0$ for one class, and $f(X)<0$ for the other class

Separation in low dimensions

Consider 2 features, X_{1} and X_{2}, and a binary outcome. It might be possible to draw several separating hyperplanes:

Which of these hyperplanes is the best classifier?
Grinnell College

The maximum margin classifier

A hard margin SVM finds the "maximum margin" hyperplane:

This plane represents the "widest street" between classes, and it is characterized by "support vectors", or training data-points that would change this hyperplane if removed

Grinnell College
Statistics

Finding the maximum margin classifier

- Consider the constraint: $\sum_{j=1}^{p} \beta_{j}^{2}=1$, which normalizes how our hyperplane is defined
- This won't impact the direction of the plane, as $\left\{\beta_{1}=1, \beta_{2}=1\right\}$ and $\left\{\beta_{1}=3, \beta_{2}=3\right\}$ have the same orientation
- SVMs find $\beta_{1}, \ldots, \beta_{p}$ which maximize M in the expression: $y_{i}\left(\beta_{0}+\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\beta_{p} x_{i, p}\right) \geq M$
- Here the binary outcome, y_{i}, is encoded as +1 or -1 , so the left side of this expression is the distance from the current hyperplane to the $i^{\text {th }}$ data-point

Finding the maximum margin classifier

- The coefficients defining the SVM classifier can be found using the Lagrangian multiplier method
- We will not cover this method in this course (as SVMs are the only classifier we'll study that use it)
- If you're interested in the mathematical details, I recommend Robert Berwick's (of MIT) "An Idiot's guide to support vector machines"

Non-separable data (soft margin)

- If the data are non-seperable, we can relax the maximum margin approach to find a soft margin classifier:
- Now we aim to find $\beta_{1}, \ldots, \beta_{p}$ that maximize M where $y_{i}\left(\beta_{0}+\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\beta_{p} x_{i, p}\right) \geq M\left(1-\epsilon_{i}\right)$
- Subject to $\epsilon \geq 0$ and $\sum_{i=1}^{n} \epsilon_{i}<s$
- $\epsilon_{i}=0$ if a point is on the correct side of the margin
- $0<\epsilon_{i}<1$ if a point is within the margin
- $\epsilon_{i}>1$ if a point is on the wrong side of the margin
- s is controls the total amount of "slack" that is allowed, with larger values allowing for more "slack"
- As s decreases the tolerance for data-points being on the wrong side of the hyperplane diminishes

Soft-margin examples

As s decreases (left to right), the margin M decreases:

A larger s yields a more stable classifier, so the bias-variance trade-off can be manipulated via the value of s.
\#Grinnell College
Statistics

Feature expansion

- Consider the features: $\left\{X_{1}, X_{2}\right\}$, and recall that the SVM classifier finds a decision boundary (separating hyperplane) of the form $\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}$
- We could apply transformations to create a new set of features: $\left\{X_{1}, X_{2}, X_{1}^{2}, X_{2}^{2}, X_{1} X_{2}\right\}$
- Now the decision boundary would have the form:

$$
\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1}^{2}+\beta_{4} X_{2}^{2}+\beta_{5} X_{1} X_{2}
$$

- This corresponds to a non-linear boundary in the original feature space
- Kernel functions allow for computationally efficient mappings of the original features to higher dimensions for the purpose of finding a non-linear decision boundary

Inner products

To fully understand kernel functions, we'll need to be familiar with the inner product:

$$
\text { inner product of } \begin{aligned}
\mathbf{x}_{1}, \mathbf{x}_{2} & =\mathbf{x}_{1}^{T} \mathbf{x}_{2} \\
& =\sum_{j=1}^{p} x_{1 j} x_{2 j}
\end{aligned}
$$

We will not go too far into the details, but SVM estimation can be re-framed in terms of the inner product of each pair of data-points:

$$
f(x)=\beta_{0}+\sum_{i=1}^{n} \alpha_{i} \mathbf{x}^{T} \mathbf{x}_{i}
$$

Inner products (cont.)

In the previous formulation (repeated below), it turns out that many of the $\hat{\alpha}_{i}$ are zero

$$
f(x)=\beta_{0}+\sum_{i=1}^{n} \alpha_{i} \mathbf{x}^{T} \mathbf{x}_{i}
$$

- This is a collection of $\binom{n}{2}$ inner products, corresponding to n different α_{i} parameters, but only those involving points on or inside the margin have non-zero values (ie: $\hat{\alpha}_{i} \neq 0$)
- Various feature expansion approaches are more easily handled using this framework using the proper Kernel function $K()$

$$
f(x)=\beta_{0}+\sum_{i=1}^{n} \alpha_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)
$$

Kernel functions

1. Linear kernel $-K\left(\mathbf{x}, \mathbf{x}_{i}\right)=\mathbf{x}^{T} \mathbf{x}_{i}$
2. Polynomial kernel $-K\left(\mathbf{x}, \mathbf{x}_{i}\right)=\left(\gamma \mathbf{x}^{T} \mathbf{x}_{i}+1\right)^{d}$

- γ controls the influence of individual training samples, d is the degree of the polynomial expansion

3. Radial Basis Function (RBF) kernel $K\left(\mathbf{x}, \mathbf{x}_{i}\right)=\exp \left(-\gamma\left\|\mathbf{x}-\mathbf{x}_{i}\right\|^{2}\right)$

- γ controls the influence of individual training samples

4. Sigmoid kernel $-K\left(\mathbf{x}, \mathbf{x}_{i}\right)=\tanh \left(\gamma \mathbf{x}^{T} \mathbf{x}_{i}+r\right)$

- γ controls the influence of individual training samples, r is a bias term that allows the transformation to be shifted up or down

Polynomial kernel $(d=3, \gamma=2)$

Decision boundaries of poly kernel in SVC

RBF kernel

Decision boundaries of rbf kernel in SVC

Grinnell College

Sigmoid kernel

Decision boundaries of sigmoid kernel in SVC

Grinnell College

Practical guidance

- SVMs treat each feature equally, so standardization is an important data preparation step
- The kernel function (type of feature expansion) and "slack" parameter can be tuned via cross-validation to achieve optimal classification performance
- sklearn represents "slack" using a parameter C that is inversely proportional to what we called s
- Other hyperparameters affiliated with certain kernel functions, such as \gamma can also be tuned in this manner
- Support vector regression is also implemented in sklearn, the SVM lab will briefly cover this method
- SVMs also have been generalized to multi-class tasks, and use a one-vs-one scheme in sklearn

