Introduction to supervised learning, training
vs. validation, and k-nearest neighbors
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Overview

> Applications of unsupervised learning to tend to be open-ended
and prone to all sorts of subjective choices
> Methods like scree plots of silhouette scores provide some

objective guidance, but it's difficult to judge one analysis to be
quantitatively better than another
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Overview

> Applications of unsupervised learning to tend to be open-ended
and prone to all sorts of subjective choices
> Methods like scree plots of silhouette scores provide some
objective guidance, but it's difficult to judge one analysis to be
quantitatively better than another
» In contrast, supervised learning tends to be highly objective
> \We have a predetermined outcome that we're aiming to predict,
which allows us to quantify how accurate our predictions are
> We'll focus on two types of supervised learning
> Classification - predicting the class or category of a data-point

> Regression - predicting a numerical characteristic of a
data-point
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Supervised learning framework

» Consider data consisting of an n-dimensional vector of
outcomes, y, an n by p matrix of features, X
> Further, suppose the true relationship between y and X is given
by the following equation:

y=7f(X)+e

» The function f() determines how the features in X influence y
> ¢ is an n-dimensional vector of errors

> In this setting, we aim to accurately approximate f()
> If ¢=0, we may be able to perfectly approximately f()
> However, € #0 introduces irreducible error
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Example

Consider two predictors, X1 and Y>, and a binary outcome Y of
“healthy” or "unhealthy”. Can these predictors be used to accurately

classify an observation?
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Example (cont)

In this example, f() is shown below (blue ellipse):
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We can see that it's possible to use the data to learn a good
approximation of f().
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Example (cont.)

As a human, you might observe that healthy data-points tend to fall

between 2 and 8 in both x; and x», so you might propose the

following classification model:

10

x2

O healthy

A unhealthy

x1

This simple model correctly classifies 178 of 200 data-points.
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Example (irreducible error)

Let's revisit the true relationship between X1, X5, and Y. Notice
how some “healthy” data-
points are outside the ellipse, and some “unhealthy” ones are inside it:

o healthy
A unhealthy

x2
0 2 4 6 8 10
I

» The misclassification of these data-points reflects this
scenario’s irreducible error (sometimes called “Bayes error”)
> Even the best possible approximation of f() cannot perfectly
claccifi avans data-point
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Irreducible error in other contexts

Is a digit a “5" or something else?

s =
S =

How might the concept of irreducible error manifest in this
application?
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Irreducible error in other contexts

We could know the exact “rules” used to make a “5", but it's
possible we encounter examples of “5" that look more like a “6".
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Even state-of-the-art classifiers (which approach the irreducible error
rate) incorrectly classify ~0.5% of handwritten digits (source)
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https://www.researchgate.net/figure/All-of-the-misclassified-MNIST-test-digits-using-our-method-63-out-of-10-000-The-text_fig4_2528210

Reducible Error

Achieving the best approximation of f() amounts to minimizing
reducible error. Consider the following classifier:

10

= healthy
£ unhealthy

¥2

x1

iced the error rate to zero?
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Training vs. Testing Splits

> We aren't really interested in the error rate for observed
examples
> Instead, we'd like to minimize reducible error on new examples
that our model hasn't seen yet
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Training vs. Testing Splits

> We aren't really interested in the error rate for observed
examples
> Instead, we'd like to minimize reducible error on new examples
that our model hasn't seen yet
» Standard protocol is to split the available data into training
and testing sets
> The training set is used to learn a collection of rules

> The testing set is used to validate how well these rules perform
on unseen data
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Training, Testing, and Error

» Consider a hypothetical example with an irreducible error of
“20 units”
» Training error can be reduced by increasing model complexity
(ie: learning more rules)
> Test error is bounded in probability by the irreducible error
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Bias vs. Variance

Reducible error can arise in one of two ways: bias or variance

> Bias is when a learner lacks the structural flexibility to detect
aspects of the true relationship between the predictors and the
outcome

» Variance is when a learner is overly sensitive to chance artifacts
present in the data (ie: the manifestations of irreducible error)

Poor performance due to high bias is called underfitting, while poor
performance due to high variance is called overfitting
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Bias vs. Variance

How would you compare the bias and variance of the following
models (a rectangle vs. an n-dimensional polygon)?
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Quantifying error

» Our toy example used a binary categorical outcome, a scenario
where classification accuracy provides a natural way to
understand error

> Later this week we'll consider other ways to measure the error
of a classification model

» For a numeric outcome, it's most natural to measure error by
summarizing the distances between predicted and observed
outcomes:

> Root Mean Squared Error: RMSE = %Z;’:l(y,-—f/,-)Q
> Mean Absolute Error: MAE = lZ;’:l lyi — il

n
» Where §; our model's prediction for the it" data-point
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k-nearest neighbors

A simple rule is to classify each new data-point using its nearest
neighbor, or the observation closest to it's x» and x1 coordinates:

o &
=] dap o baa B a0 4 o healthy
Aa W® B &1 4 ynhealthy
aad s " 0 Fal
@ — An o o0 oo
aAom O ® o i Sy
o o o N A
o og I3
o — ﬁ DO o o ) 000 15&
=]
o & ﬂo % o o8 oo o,
%4 o o oo a D%‘ﬂ
- - % © Bo o 2 &303 A
§é& ’ 0o, DDO “a
e Aowoo " I
o — A o0 2 RN
A w® 00,0 2 a &
A [ A
A A Ah A oa agp
o - & A it &
T T T T T T T T
-2 0 2 4 6 8 10 12

x1

22 Grinnell College

Statistics
16 /25



Minkowski distance

To implement this approach, we need to define how to determine

the nearest neighbor:
1/q
)

p
d(xa,%xp) = ( |Xa,j = Xb,j
]

J

> Minkowski distance, d,p, measures the distance between
data-points a and b
» The formula sums pairwise coordinate differences across K
dimensions
» The parameter p is chosen by the analyst
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Popular distance measures

Two of the most popular choices are p=2 and p=1:

deuclidean = (Xa,j _Xb,j)2

p
dmanhattan = Z |Xa,j _Xb,j|
Jj=1

When might these measures lead to different neighbors?
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Other hyperparameters (weighting)

There are two schemes by which neighbors can contribute to a
prediction:

1. Uniform weighting - each neighbor contributes equally

2. Distance weighting - neighbors are weighted by the inverse of
their distance to the new data-point, allowing closer neighbors
to contribute more strongly

For regression tasks, the prediction is either a simple or weighted
average. For classification tasks, the predicted probabilities are given
by either simple or weighted voting.
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Other hyperparameters (number of neighbors)

Notice the gap in performance on the test vs. training data:

0.25

Classification Error

Number of Neighbors
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Scaling and standardization

Because KNN relies upon distance calculations, rescaling the
predictors is important:
1. Standardization:

Xt = x;—mean(x)

i sd(x)
2. Robust scaling:

x _ x;—median(x)

Xi = TTIQR(x)
3. Min-Max scaling:
x _ Xx;—min(x)
Xi = max(x)—min(x)

4. Max-Absolute scaling:

X* _ Xi
i max(|x])
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Scaling and standardization

> Standardization forces features to have a mean of zero and a
standard deviation of one
> Robust scaling forces features to have a median of zero, and it
can be beneficial for data with large outliers
> Min-Max scaling maps each feature onto a [0,1] interval, which
can have computational advantages
> Max-Absolute scaling is similar to Min-Max scaling, but the
output range is [-1,1] and it will preserve exact zeros (important
for sparse data)
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Scaling vs. Normalization

Scaling changes the range of your data, it does not change the
distributional shape:
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However, the choice of scaler does matter for k-nearest neighbors,
since dimensions are rescaled individually
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Normalization

If you'd like to change the distributional shape of your data to
reduce the effects of skew/outliers, two strategies are:

1. Log-transformation - simply taking the logarithm of each of the
variable's values -
2. Box-Cox transformation - xl.* = X’T_ for A#0 and X>0

Raw Data Log Box-Cox (lam = 0.2)
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Putting it all together

k-nearest neighbors is a simple model that is useful in illustrating
the basic workflow of machine learning:

1.
2.

4.

Split the data into training and validation sets

Set up a data preparation pipeline (ie: rescaling, normalization,
dimension reduction, etc.)

Determine hyperparamters (ie: weighting, number of neighbors,
etc.)

Evaluate the final model on the validation set

This week's lab will cover each of these steps in greater detail
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