
Introduction to supervised learning, training
vs. validation, and k-nearest neighbors

Ryan Miller

1 / 25

Overview

Ï Applications of unsupervised learning to tend to be open-ended
and prone to all sorts of subjective choices

Ï Methods like scree plots of silhouette scores provide some
objective guidance, but it’s difficult to judge one analysis to be
quantitatively better than another

Ï In contrast, supervised learning tends to be highly objective
Ï We have a predetermined outcome that we’re aiming to predict,

which allows us to quantify how accurate our predictions are
Ï We’ll focus on two types of supervised learning

Ï Classification - predicting the class or category of a data-point
Ï Regression - predicting a numerical characteristic of a

data-point

2 / 25

Overview

Ï Applications of unsupervised learning to tend to be open-ended
and prone to all sorts of subjective choices

Ï Methods like scree plots of silhouette scores provide some
objective guidance, but it’s difficult to judge one analysis to be
quantitatively better than another

Ï In contrast, supervised learning tends to be highly objective
Ï We have a predetermined outcome that we’re aiming to predict,

which allows us to quantify how accurate our predictions are
Ï We’ll focus on two types of supervised learning

Ï Classification - predicting the class or category of a data-point
Ï Regression - predicting a numerical characteristic of a

data-point

2 / 25

Supervised learning framework

Ï Consider data consisting of an n-dimensional vector of
outcomes, y, an n by p matrix of features, X

Ï Further, suppose the true relationship between y and X is given
by the following equation:

y= f (X)+ϵ

Ï The function f () determines how the features in X influence y
Ï ϵ is an n-dimensional vector of errors

Ï In this setting, we aim to accurately approximate f ()
Ï If ϵ= 0, we may be able to perfectly approximately f ()
Ï However, ϵ ̸= 0 introduces irreducible error

3 / 25

Example

Consider two predictors, X1 and Y2, and a binary outcome Y of
“healthy” or “unhealthy”. Can these predictors be used to accurately
classify an observation?

−2 0 2 4 6 8 10 12

0
2

4
6

8
10

x1

x2

healthy
unhealthy

4 / 25

Example (cont)

In this example, f () is shown below (blue ellipse):

−2 0 2 4 6 8 10 12

0
2

4
6

8
10

x1

x2

healthy
unhealthy

We can see that it’s possible to use the data to learn a good
approximation of f ().

5 / 25

Example (cont.)

As a human, you might observe that healthy data-points tend to fall
between 2 and 8 in both x1 and x2, so you might propose the
following classification model:

−2 0 2 4 6 8 10 12

0
2

4
6

8
10

x1

x2

healthy
unhealthy

This simple model correctly classifies 178 of 200 data-points.

6 / 25

Example (irreducible error)

Let’s revisit the true relationship between X1, X2, and Y . Notice
how some “healthy” data-
points are outside the ellipse, and some “unhealthy” ones are inside it:

−2 0 2 4 6 8 10 12

0
2

4
6

8
10

x1

x2

healthy
unhealthy

Ï The misclassification of these data-points reflects this
scenario’s irreducible error (sometimes called “Bayes error”)

Ï Even the best possible approximation of f () cannot perfectly
classify every data-point

7 / 25

Irreducible error in other contexts

Is a digit a “5” or something else?

5 10 15 20 25

5
10

15
20

25

5 10 15 20 25

5
10

15
20

25

5 10 15 20 25

5
10

15
20

25

5 10 15 20 25

5
10

15
20

25

5 10 15 20 25

5
10

15
20

25

5 10 15 20 25

5
10

15
20

25

How might the concept of irreducible error manifest in this
application?

8 / 25

Irreducible error in other contexts

We could know the exact “rules” used to make a “5”, but it’s
possible we encounter examples of “5” that look more like a “6”.

Even state-of-the-art classifiers (which approach the irreducible error
rate) incorrectly classify ∼ 0.5% of handwritten digits (source)

9 / 25

https://www.researchgate.net/figure/All-of-the-misclassified-MNIST-test-digits-using-our-method-63-out-of-10-000-The-text_fig4_2528210

Reducible Error

Achieving the best approximation of f () amounts to minimizing
reducible error. Consider the following classifier:

Has this classifier reduced the error rate to zero?
10 / 25

Training vs. Testing Splits

Ï We aren’t really interested in the error rate for observed
examples

Ï Instead, we’d like to minimize reducible error on new examples
that our model hasn’t seen yet

Ï Standard protocol is to split the available data into training
and testing sets

Ï The training set is used to learn a collection of rules
Ï The testing set is used to validate how well these rules perform

on unseen data

11 / 25

Training vs. Testing Splits

Ï We aren’t really interested in the error rate for observed
examples

Ï Instead, we’d like to minimize reducible error on new examples
that our model hasn’t seen yet

Ï Standard protocol is to split the available data into training
and testing sets

Ï The training set is used to learn a collection of rules
Ï The testing set is used to validate how well these rules perform

on unseen data

11 / 25

Training, Testing, and Error

Ï Consider a hypothetical example with an irreducible error of
“20 units”

Ï Training error can be reduced by increasing model complexity
(ie: learning more rules)

Ï Test error is bounded in probability by the irreducible error

0 20 40 60 80 100

0
20

40
60

Model Complexity

E
rr

or

training error
testing error
irreducible error

12 / 25

Bias vs. Variance

Reducible error can arise in one of two ways: bias or variance

Ï Bias is when a learner lacks the structural flexibility to detect
aspects of the true relationship between the predictors and the
outcome

Ï Variance is when a learner is overly sensitive to chance artifacts
present in the data (ie: the manifestations of irreducible error)

Poor performance due to high bias is called underfitting, while poor
performance due to high variance is called overfitting

13 / 25

Bias vs. Variance

How would you compare the bias and variance of the following
models (a rectangle vs. an n-dimensional polygon)?

14 / 25

Quantifying error

Ï Our toy example used a binary categorical outcome, a scenario
where classification accuracy provides a natural way to
understand error

Ï Later this week we’ll consider other ways to measure the error
of a classification model

Ï For a numeric outcome, it’s most natural to measure error by
summarizing the distances between predicted and observed
outcomes:

Ï Root Mean Squared Error: RMSE =
√

1
n

∑n
i=1(yi − ŷi)2

Ï Mean Absolute Error: MAE = 1
n

∑n
i=1 |yi − ŷi |

Ï Where ŷi our model’s prediction for the i th data-point

15 / 25

k-nearest neighbors

A simple rule is to classify each new data-point using its nearest
neighbor, or the observation closest to it’s x2 and x1 coordinates:

16 / 25

Minkowski distance

To implement this approach, we need to define how to determine
the nearest neighbor:

d(xa,xb)=
(p∑

j=1
|xa,j −xb,j |q

)1/q

Ï Minkowski distance, da,b, measures the distance between
data-points a and b

Ï The formula sums pairwise coordinate differences across K
dimensions

Ï The parameter p is chosen by the analyst

17 / 25

Popular distance measures

Two of the most popular choices are p = 2 and p = 1:

deuclidean =
√√√√ p∑

j=1
(xa,j −xb,j)2

dmanhattan =
p∑

j=1
|xa,j −xb,j |

When might these measures lead to different neighbors?

18 / 25

Other hyperparameters (weighting)

There are two schemes by which neighbors can contribute to a
prediction:

1. Uniform weighting - each neighbor contributes equally
2. Distance weighting - neighbors are weighted by the inverse of

their distance to the new data-point, allowing closer neighbors
to contribute more strongly

For regression tasks, the prediction is either a simple or weighted
average. For classification tasks, the predicted probabilities are given
by either simple or weighted voting.

19 / 25

Other hyperparameters (number of neighbors)

Notice the gap in performance on the test vs. training data:

0.00

0.05

0.10

0.15

0.20

0.25

30 25 20 15 10 5
Number of Neighbors

C
la

ss
ifi

ca
tio

n
E

rr
or

Data

Test

Train

20 / 25

Scaling and standardization

Because KNN relies upon distance calculations, rescaling the
predictors is important:

1. Standardization:
x∗

i = xi−mean(x)
sd(x)

2. Robust scaling:
x∗

i = xi−median(x)
IQR(x)

3. Min-Max scaling:

x∗
i = xi−min(x)

max(x)−min(x)

4. Max-Absolute scaling:

x∗
i = xi

max(|x |)

21 / 25

Scaling and standardization

Ï Standardization forces features to have a mean of zero and a
standard deviation of one

Ï Robust scaling forces features to have a median of zero, and it
can be beneficial for data with large outliers

Ï Min-Max scaling maps each feature onto a [0,1] interval, which
can have computational advantages

Ï Max-Absolute scaling is similar to Min-Max scaling, but the
output range is [-1,1] and it will preserve exact zeros (important
for sparse data)

22 / 25

Scaling vs. Normalization

Scaling changes the range of your data, it does not change the
distributional shape:

Raw Data

F
re

qu
en

cy

0 200 400 600 800

0
20

0
40

0

Standardization

F
re

qu
en

cy
0 2 4 6 8

0
10

0
25

0

Robust

F
re

qu
en

cy

0 2 4 6 8 10

0
20

0
40

0

Min−Max

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0

Max−Absolute

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0

However, the choice of scaler does matter for k-nearest neighbors,
since dimensions are rescaled individually

23 / 25

Normalization

If you’d like to change the distributional shape of your data to
reduce the effects of skew/outliers, two strategies are:

1. Log-transformation - simply taking the logarithm of each of the
variable’s values

2. Box-Cox transformation - x∗
i = xλ

i −1
λ for λ ̸= 0 and X > 0

Raw Data

F
re

qu
en

cy

0 200 400 600 800

0
10

0
20

0
30

0
40

0
50

0

Log

F
re

qu
en

cy

−2 0 2 4 6

0
50

10
0

15
0

Box−Cox (lam = 0.2)

F
re

qu
en

cy

0 5 10

0
20

40
60

80

24 / 25

Putting it all together

k-nearest neighbors is a simple model that is useful in illustrating
the basic workflow of machine learning:

1. Split the data into training and validation sets
2. Set up a data preparation pipeline (ie: rescaling, normalization,

dimension reduction, etc.)
3. Determine hyperparamters (ie: weighting, number of neighbors,

etc.)
4. Evaluate the final model on the validation set

This week’s lab will cover each of these steps in greater detail

25 / 25

