Boosting

Ryan Miller

Introduction

- Random Forests use bagging to build an ensemble of decision tree models
 - Many trees trained on slightly different data contribute to the model's predictions
 - ► This is an aggregation approach, as each base model is trained separately and the predictions are aggregated

Introduction

- Random Forests use bagging to build an ensemble of decision tree models
 - Many trees trained on slightly different data contribute to the model's predictions
 - ► This is an *aggregation* approach, as each base model is *trained* separately and the predictions are aggregated
- ► Today we will discuss *boosting* approaches, where the base models in the ensemble are *trained sequentially*
 - ▶ Boosting was originally developed as a classifier aimed at combining many "weak" classifiers into a more powerful "committee" by Freund and Schapire (1997) as "Adaptive Boosting" or "AdaBoost.M1"

Bagging vs. Boosting

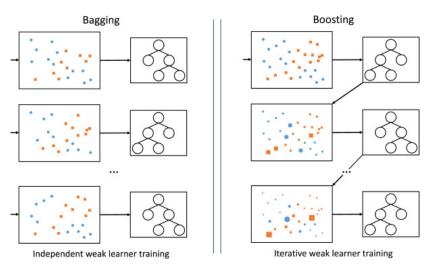


Image Credit: https://www.sciencedirect.com/science/article/pii/S1566253520303195

AdaBoost

To begin, suppose Y is a binary variable encoded by $\{-1,1\}$, and define the error rate as:

error =
$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq G(\mathbf{x}_i))$$

- ▶ Here, $G(\mathbf{x}_i)$ represents the predicted class for an observation with predictors \mathbf{x}_i
 - Notice that if y_i does not match the predicted class the summation increases by 1
 - ▶ Thus, we see that error = 1 classification accuracy

AdaBoost

In AdaBoost, G() is a sum of M sequentially built classifiers trained on differently weighted versions of the data:

$$G(x) = \operatorname{Sign}\left(\sum_{m=1}^{M} \alpha_m G_m(x)\right)$$

- $\lambda_1, \dots, \lambda_M$ let each base learner to contribute differently to the prediction (some models to contribute more)
 - ► Typically, $\alpha_m = log((1 error_m)/error_m)$
- ► Each training data-point, (\mathbf{x}_i, y_i) is also given a different weight, w_{im} , at each iteration
 - At the first step of the algorithm, these weights are set to $\frac{1}{n}$, so that all observations contribute equally
 - At step m, the weights of observations misclassified by $G_{m-1}(x)$ are increased by a factor of $exp(\alpha_{m-1})$

AdaBoost (algorithm)

Pseudocode for the original AdaBoost algorithm:

```
w = 1/n # initialize weights
for i in 1:M:
    G_m = G_m + model.fit(X, w, y) # next fit
    err_m = error(G_m) # calculate error
    alpha_m = log((1-err_m)/err_m)
    w_i = w_i*exp(a_m*(y_i != G_m(x_i))) # reweight
```

- Notice that log((1-0.5)/0.5) = 0, so a model that is randomly guessing won't contribute to the ensemble
- If an observation was misclassified, its weight in the next model is increased by a factor of $exp(\alpha_m)$

AdaBoost (diagram)

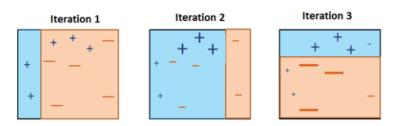


Image Credit: Packt Big data and Business Intelligence

Gradient Boosting

- AdaBoost re-weights observations that are misclassified before training the next model
 - ► Gradient boosting takes a more general approach: train subsequent models to the *residuals* (or *pseudoresiduals* for cost functions other than squared error)
- At each iteration, t, of gradient boosting, the algorithm finds a base model (estimates \hat{f}_t):

$$\hat{f}_t(\mathbf{X}) = \arg \min_{f_t} (L(y, \hat{y}_{t-1} + \eta f_t(\mathbf{X})))$$

► For the squared error cost function, this is amounts to fitting the base model to the residuals (we'll see more on this in a future homework assignment)

Gradient Boosting (pseudocode)

```
r = y ## Initialize residuals
f = 0 ## Initialize model to 'zero'

for i in 1:M:
    f_m = model.fit(X, r) ## Fit model to residuals
    f = f + eta*f_m ## Add new model to ensemble
    r = r - eta*f_m ## Update residuals
```

- ► The output is *f* , the ensemble model consisting of *M* different base models.
- ▶ The learning rate, η (eta), is a small positive number that controls how quickly boosting learns (by limiting how much a model can contribute to the ensemble)

Gradient Boosting vs AdaBoost (diagram)

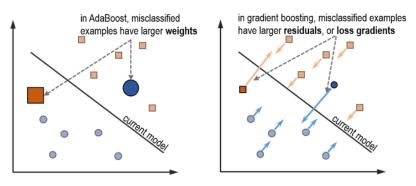


Image credit: Ensemble Methods for Machine Learning (textbook)

Comments on Gradient Boosting

- Like bagging, gradient boosting is a general way to build an ensemble model that doesn't necessarily need to use decision trees as base learners
 - ► That said, the xgboost (extreme gradient boosting) library is the most widely used boosting implementation by a large margin and it uses decision trees as its default
- Similar to bagging, there are hyperparameters of a boosting ensemble at two levels:
 - ► The level of the base learners, such as maximum depth, minimum samples to split etc.
 - ► The ensemble level, such as the learning rate, number of boosting iterations, feature subsampling, etc.

What to Know for the Next Quiz

- 1. Differences between boosting and bagging ensembles:
 - Base learners are trained independently in bagging, but sequentially in boosting
 - More base learners leads to overfitting in boosting, but not in bagging
 - Base learners are typically treated equally in bagging, but differentially in boosting
- 2. Basic concepts of gradient boosting:
 - New models are fit to the residuals (or pseudoresidual), thereby correcting the errors made previously
 - The learning rate controls how much each new base model contributes to the ensemble
 - ► The learning rate and number of boosting iterations work together to influence the bias-variance trade-off

