
Boosting

Ryan Miller

1 / 12

Introduction

Ï Random Forests use bagging to build an ensemble of decision
tree models

Ï Many trees trained on slightly different data contribute to the
model’s predictions

Ï This is an aggregation approach, as each base model is trained
separately and the predictions are aggregated

Ï Today we will discuss boosting approaches, where the base
models in the ensemble are trained sequentially

Ï Boosting was originally developed as a classifier aimed at
combining many “weak” classifiers into a more powerful
“committee” by Freund and Schapire (1997) as “Adaptive
Boosting” or “AdaBoost.M1”

2 / 12

Introduction

Ï Random Forests use bagging to build an ensemble of decision
tree models

Ï Many trees trained on slightly different data contribute to the
model’s predictions

Ï This is an aggregation approach, as each base model is trained
separately and the predictions are aggregated

Ï Today we will discuss boosting approaches, where the base
models in the ensemble are trained sequentially

Ï Boosting was originally developed as a classifier aimed at
combining many “weak” classifiers into a more powerful
“committee” by Freund and Schapire (1997) as “Adaptive
Boosting” or “AdaBoost.M1”

2 / 12

Bagging vs. Boosting

Image Credit: https://www.sciencedirect.com/science/article/pii/S1566253520303195

3 / 12

https://www.sciencedirect.com/science/article/pii/S1566253520303195

AdaBoost

To begin, suppose Y is a binary variable encoded by {−1,1}, and
define the error rate as:

error= 1
n

n∑
i=1

I(yi ̸=G(xi))

Ï Here, G(xi) represents the predicted class for an observation
with predictors xi

Ï Notice that if yi does not match the predicted class the
summation increases by 1

Ï Thus, we see that error= 1−classification accuracy

4 / 12

AdaBoost

In AdaBoost, G() is a sum of M sequentially built classifiers trained
on differently weighted versions of the data:

G(x)= Sign
(M∑

m=1
αmGm(x)

)

Ï α1, . . . ,αM let each base learner to contribute differently to the
prediction (some models to contribute more)

Ï Typically, αm = log((1−errorm)/errorm)
Ï Each training data-point, (xi ,yi) is also given a different

weight, wim, at each iteration
Ï At the first step of the algorithm, these weights are set to 1

n , so
that all observations contribute equally

Ï At step m, the weights of observations misclassified by Gm−1(x)
are increased by a factor of exp(αm−1)

5 / 12

AdaBoost (algorithm)

Pseudocode for the original AdaBoost algorithm:
w = 1/n # initialize weights
for i in 1:M:

G_m = G_m + model.fit(X, w, y) # next fit
err_m = error(G_m) # calculate error
alpha_m = log((1-err_m)/err_m)
w_i = w_i*exp(a_m*(y_i != G_m(x_i))) # reweight

Ï Notice that log((1−0.5)/0.5)= 0, so a model that is randomly
guessing won’t contribute to the ensemble

Ï If an observation was misclassified, its weight in the next model
is increased by a factor of exp(αm)

6 / 12

AdaBoost (diagram)

Image Credit: Packt Big data and Business Intelligence

7 / 12

https://subscription.packtpub.com/book/big-data-&-business-intelligence/9781788295758/4/ch04lvl1sec32/adaboost-classifier

Gradient Boosting

Ï AdaBoost re-weights observations that are misclassified before
training the next model

Ï Gradient boosting takes a more general approach: train
subsequent models to the residuals (or pseudoresiduals for cost
functions other than squared error)

Ï At each iteration, t, of gradient boosting, the algorithm finds a
base model (estimates f̂t):

f̂t(X)= arg minft

(
L(y , ŷt−1+ηft(X))

)
Ï For the squared error cost function, this is amounts to fitting

the base model to the residuals (we’ll see more on this in a
future homework assignment)

8 / 12

Gradient Boosting (pseudocode)

r = y ## Initialize residuals
f = 0 ## Initialize model to 'zero'

for i in 1:M:
f_m = model.fit(X, r) ## Fit model to residuals
f = f + eta*f_m ## Add new model to ensemble
r = r - eta*f_m ## Update residuals

Ï The output is f , the ensemble model consisting of M different
base models.

Ï The learning rate, η (eta), is a small positive number that
controls how quickly boosting learns (by limiting how much a
model can contribute to the ensemble)

9 / 12

Gradient Boosting vs AdaBoost (diagram)

Image credit: Ensemble Methods for Machine Learning (textbook)

10 / 12

https://www.google.com/url?sa=i&url=https%3A%2F%2Flivebook.manning.com%2Fbook%2Fensemble-methods-for-machine-learning%2Fchapter-5%2Fv-2%2F&psig=AOvVaw1Hon2DOt-2wgPPmV39-fpD&ust=1677965877933000&source=images&cd=vfe&ved=0CBAQjhxqFwoTCMjzwpLcwP0CFQAAAAAdAAAAABAF

Comments on Gradient Boosting

Ï Like bagging, gradient boosting is a general way to build an
ensemble model that doesn’t necessarily need to use decision
trees as base learners

Ï That said, the xgboost (extreme gradient boosting) library is
the most widely used boosting implementation by a large
margin and it uses decision trees as its default

Ï Similar to bagging, there are hyperparameters of a boosting
ensemble at two levels:

Ï The level of the base learners, such as maximum depth,
minimum samples to split etc.

Ï The ensemble level, such as the learning rate, number of
boosting iterations, feature subsampling, etc.

11 / 12

What to Know for the Next Quiz

1. Differences between boosting and bagging ensembles:
Ï Base learners are trained independently in bagging, but

sequentially in boosting
Ï More base learners leads to overfitting in boosting, but not in

bagging
Ï Base learners are typically treated equally in bagging, but

differentially in boosting
2. Basic concepts of gradient boosting:

Ï New models are fit to the residuals (or pseudoresidual), thereby
correcting the errors made previously

Ï The learning rate controls how much each new base model
contributes to the ensemble

Ï The learning rate and number of boosting iterations work
together to influence the bias-variance trade-off

12 / 12

