
Cross-validation

Ryan Miller

1 / 17

Introduction

So far, we’ve been working with toy data involving the classification
of healthy vs. unhealthy samples:

In our first lecture we established that we are less interested in
classification performance on the training data and instead care

more about performance on unseen test data

2 / 17

Introduction (cont.)

Below is the classification accuracy of various KNN models for this
toy data set:

70 60 50 40 30 20 10 0

0.
75

0.
85

0.
95

Performance vs. k

k

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y Training Data

New Data

Small values of k will overfit the training data, while for large values
k introduce too much bias.

3 / 17

Test Data vs. Model Selection

Ï After the test data has been used once it will no longer allow
for an unbiased evaluation of model performance

Ï That is, we could choose the value of k that performs best on
our test data, but this value would be “cherry-picked” and we’d
expect the corresponding error rate to be too optimistic

Ï What might we do to avoid over reliance on the test data?

4 / 17

Single Validation

image credit: https://algotrading101.com/learn/train-test-split/

5 / 17

https://algotrading101.com/learn/train-test-split/

Single Validation (cont.)

Carving off a separate validation set from the training data has a
few distinct disadvantages:

1. Our performance estimate is highly dependent upon the
samples assigned to the validation set and might not generalize
to other collections of new data (high variance estimate of
performance)

2. We might make decisions that overfit to this single validation
set, undermining some of its value

6 / 17

Cross-validation

Cross-validation provides more robust estimates of model
performance by repeating the training-validation process on different
“folds” of data. Shown below is a diagram of 5-fold cross-validation:

7 / 17

Cross-validation (cont.)

Pseudocode of 5-fold cross-validation:
Assign n obs into k folds
fold_id = sample(1:k, size = n)

Loop through each fold:
for i in 1:k

train_X = samples[fold_id != i]
train_y = labels[fold_id != i]
eval_X = samples[fold_id == i]
eval_y = labels[fold_id == i]

model.fit(train_X, train_y)
pred[fold_id == i] = model.predict(eval_X, eval_y)

Calculate performance
score(pred)

8 / 17

Cross-validation (cont.)

Cross-validation (CV) is a general term describing methods of
repeated data-splitting used to evaluate the performance of a model
on data that was not used in the training process:

1. k-fold cross-validation - partitions the training data into k
equally sized folds. This approach is non-exhaustive, meaning it
doesn’t consider every possible arrangement and thus
performance estimates will vary from one set of fold
assignments to another

2. Leave-one-out cross-validation (LOOCV) - training and
validation are repeated n times while holding out each single
sample as the validation set. This approach is exhaustive, but
often more computationally expensive.

9 / 17

Example - LOOCV

Cross-validation helps us avoid overfitting by producing reasonable
estimates of performance without using the test set:

70 60 50 40 30 20 10 0

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Performance vs. # Neighbors

k

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Training Data
New Data
LOOCV

10 / 17

k-fold or LOOCV?

Ï LOOCV is a special case of k-fold CV using k = n (ie: each fold
contains just a single observation)

Ï Compared to k-fold CV, LOOCV is a higher variance procedure
Ï Repeating LOOCV on different samples from the same

underlying data generation process will show a greater range of
performance estimates

Ï Errors in LOOCV are highly correlated because each training set
overlaps almost entirely

Ï k-fold cross-validation offers better generalization, but can be
unfeasible for small samples

Ï Smaller values of k are also more computationally efficient
(especially if parallelization can be used)

11 / 17

k-fold or LOOCV?

Ï LOOCV is a special case of k-fold CV using k = n (ie: each fold
contains just a single observation)

Ï Compared to k-fold CV, LOOCV is a higher variance procedure
Ï Repeating LOOCV on different samples from the same

underlying data generation process will show a greater range of
performance estimates

Ï Errors in LOOCV are highly correlated because each training set
overlaps almost entirely

Ï k-fold cross-validation offers better generalization, but can be
unfeasible for small samples

Ï Smaller values of k are also more computationally efficient
(especially if parallelization can be used)

11 / 17

Grid Search

Ï Cross-validation provides a framework for unbiased performance
evaluation using only the training data

Ï However, it must be combined with other methods in order to
determine the best values for a method’s hyperparameters (ie:
finding the best number of neighbors)

Ï Grid search is a simple (and widely used) approach for finding
effective combinations of tuning parameters using
cross-validation

Ï The idea is to systematically and exhaustively search a grid of
candidate values that span interesting areas of the parameter
space

12 / 17

Grid Search

Ï Cross-validation provides a framework for unbiased performance
evaluation using only the training data

Ï However, it must be combined with other methods in order to
determine the best values for a method’s hyperparameters (ie:
finding the best number of neighbors)

Ï Grid search is a simple (and widely used) approach for finding
effective combinations of tuning parameters using
cross-validation

Ï The idea is to systematically and exhaustively search a grid of
candidate values that span interesting areas of the parameter
space

12 / 17

Grid Search (example)

Here’s an example parameter grid for KNN that explores k ∈ {3,4,5},
Euclidean or Manhattan distance, and uniform or distance weighting:

k Distance Weight

3 euclidean uniform
4 euclidean uniform
5 euclidean uniform
3 manhattan uniform
4 manhattan uniform

5 manhattan uniform
3 euclidean distance
4 euclidean distance
5 euclidean distance
3 manhattan distance

4 manhattan distance
5 manhattan distance

Python will allow us to evaluate each row of this grid via
cross-validation using the same fold assignments.

13 / 17

Randomized Search

Ï Grid search can be computationally expensive, especially when
you’d like to explore a broad range of values for several
different hyperparameters

Ï Randomized search is an alternative method that allows you
specify distributions to be randomly sampled from for each
hyperparameter

Ï For KNN, you might sample k from a Poisson distribution with
µ=p

n

14 / 17

Grid Search vs. Randomized Search

An underappreciated fact is that the uniform spacing in grid
searches can sometimes prevent us from finding optimal values for
important parameters:

15 / 17

Other Approaches

Ï Randomized search and grid search approaches can be
combined to explore large parameter spaces with greater
efficiency

Ï For example, you might perform several iterations of random
search to eliminate parameter values that lead to poor
performance, then you might conduct a grid search over the
remaining possibilities

Ï Successive halving searches are also supported in Python’s
sklearn library

Ï The main idea is to only allow top scoring parameter values to
“survive” into later rounds of the search

Ï Although we won’t cover this method in detail, you’re welcome
to explore it for use on your final project

16 / 17

What to Know for Our Next Quiz

Ï Understand the basic steps behind k-fold cross-validation,
including:

Ï Dividing the data into k equally sized parts
Ï Training a model using the samples in k-1 of these parts and

using it to make predictions on the left out fold
Ï Repeating until all folds have been left out exactly once

Ï Understand how k-fold cross-validation can be combined with
approaches like grid search and randomized search to make
informed choices of hyperparameters and data pre-processing
steps

17 / 17

