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Introduction

We've seen a variety of modeling algorithms that can be divided
into two paradigms:

1. Data-dependent models, such as decision trees or KNN, where
the model structure is directly shaped by the training data
without any fixed functional form

2. Parametric models, such as linear/logistic regression, where the
model has a pre-defined functional form, and the parameters of
that form (weights) are learned from the data

Data-dependent models typically rely upon their own specialized
optimization algorithms, but parametric models can be optimized by
gradient descent.
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Cost Functions

» When we talk about a model “learning” from the training data,
what we really mean is that it alters its parameters to achieve a

lower error rate, which is measured by a cost function
> Cost functions quantify how well a model's predictions align
with actual outcomes

» The two cost functions we'll focus on are:

> Squared-error - Cost = % "y —)?;)2
> We'll use this for numeric outcomes
> Cross-entropy - Cost=—Y", (y;-log(yi)+ (1-y;)-log(1-§))

> We'll use this for categorical outcomes
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Linear Regression and Squared-error

Recall that linear regression represents the outcome as a linear
combination of predictive features:

Y =wo+wi X1 +wo Xo+...+wp X, + error

This model can be expressed using matrix notation:

y = Xw + error

For a given set of weight estimates, w, we can define the cost:
_1 ANT N
Cost = = (y—Xw) ' (y — Xw)
This value measures the effectiveness of w

22 Grinnell College

statistics
4/14



Linear Regression and Squared-error

As you might be expecting, we generally want the best possible set
of weights, or the set that minimizes the cost function. We can use
calculus to perform this minimization, but first let's rearrange a few

terms:
Cost = 1 (y—Xw) T (y - Xw)
=1yTy+ 12y TXW+ (Xw) T XwW)
,17y y+ 2 TXw+ wTXTXw

For linear regression, we can differentiate with respect to w, set the
resulting expression equal to zero, then solve for a closed form
solution of: w=(XTX)"1XTy
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Gradient Descent

» The derivative is the slope of a function at a particular location,
so we can use the gradient to gradually move towards the
minimum of any (convex) cost function

> The gradient descent algorithm works to minimize the cost
function using sequential updates:

w) = wl-1) _ a%(w(ifl))

> « is a tuning parameter that controls the learning rate, or how
quickly to update the weight vector at each iteration
> A small a requires many iterations for the algorithm to converge
(reach the minimum)
> A large a can overshoot the minimum, which can also cause
convergence issues
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Gradient Descent for Linear Regression

Recall our rearranged cost function is:

Cost=1yTy+Ll(—2y"Xw+w' X" Xw)

Thus, after applying some matrix calculus shortcuts the gradient is:

Gradient = _72XT(y - Xw)

So, our gradient descent update scheme is:

wi) =Wl — . (22X T (y - XwU)))
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Simple Example

As an illustration, consider a very simple special case of linear
regression involving no bias term (intercept) and a single weight
parameter where data are generated via:

Y =2.5X1 +error

For this model, the squared error cost function is:

Cost = %(y—xthfvl)T(y—xthfvl)
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Simple Example (cont.)

The graphs below illustrate 10 iterations of gradient descent for our
; ; 0) _ -
simple example (starting at w; ’ =0):

Learning Rate of 0.1 Learning Rate of 0.5 Learning Rate of 0.8

Gradient descent typically stops when the next update uses weight
changes that are below a small, predefined threshold.

22 Grinnell College
Statistics
9/14



Stochastic Gradient Descent

» In our simple example, computing the gradient at each iteration
required two vector-product calculations: y’x; and xlTxl
> Fortunately, these can both be computed ahead of time (rather
than at each iteration) which makes algorithm very
computationally efficient
» For other models, the parameter vector is involved in
vector-product calculations within the gradient, so these
vector-product calculations must be redone at each iteration
> In big-data settings, this computational challenge (among
others) has led to the popularity of stochastic gradient
descent
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Stochastic Gradient Descent

Stochastic Gradient Descent uses the same framework as gradient
descent (updating parameters using the gradient to improve the cost
function) but it does so using only one training sample at a time:

Only one, alpha=0.1 Cost by iter Estimated w1 by iter
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Mini-Batch Gradient Descent

> Stochastic gradient descent has an added benefit of allowing
the optimization to avoid getting trapped at local minima
> However, the convergence is noisy and the algorithm is difficult
to parallelize when the number of training samples is large
» Mini-batch gradient descent divides the data into batches
and performs each update using a batch of data rather than
the entire thing (or only one observation)
> This is less noisy and more parallelizable than stochastic
gradient descent, while still introducing enough randomness to
help overcome local minima
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Mini-Batch Gradient

Descent

Batches of size 10, alpha = 0.1 Cost by iter Estimated w1 by iter
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What to Know for the Next Quiz

» Understand the fundamental ideas behind cost functions and

gradient descent
> The cost function measures how accurate predictions are
> The derivative (gradient) of the cost function evaluated at a
particular set of weights is a slope, which indicates how to
update the weights in order to reduce the cost
» Understand the role of the learning rate in gradient descent
» Be familiar with the advantages and reasons to use stochastic

or mini-batch gradient descent
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