
Introduction to Neural Networks

Ryan Miller

1 / 25



Review of Logistic Regression

Logistic regression uses a set of features, X1, . . . ,Xp, to predict a
binary outcome, Y , using the following structure:

yi =Bern(π= g(zi)) where g(zi)= 1
1+exp(−zi )

Here zi = ŵ0+ ŵ1xi2+ ŵ2xi2+ . . . is the linear predictor for the i th
observation.

2 / 25



Review of Logistic Regression

The model’s weights, {w0,w1, . . . ,wp}, are found by optimizing the
cross-entropy cost function:

Cost=−1
n

n∑
i=1

(
yi log(g(zi))+ (1−yi)log(1−g(zi))

)
This optimization relies upon differentiating the cost function with
respect to the unknown weights, which we can express using chain
rule:

Gradient = ∂Cost
∂g · ∂g

∂z · ∂z
∂w

3 / 25



Review of Logistic Regression

We can represent logistic regression in the following diagram, where
a weight combination of inputs goes into the sigmoid function (red
dot) which produces the output:

Input #1

Input #2

Input #3

Input #4

Output

4 / 25



Neural Networks

Ï In logistic regression, the observed features are weighted then
passed into the sigmoid function and mapped to an output

Ï Neural networks derive new features through a similar process
Ï That is, weighted combinations of observed features are passed

into an activation function resulting in a neuron (or hidden unit)
Ï We can set up the structure of our model to contain any

number of neurons
Ï The model’s neurons form a hidden layer of new features
Ï A weighted combination of these neurons can then be passed

into another activation function to predict the output
Ï This structure is a single layer neural network (see next slide)

5 / 25



Single Layer Neural Networks

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

6 / 25



Network Depth

Our previous example used a single hidden layer, but in practice we
can add more hidden layers:

7 / 25



Neural Nets vs. Logistic Regression

Logistic regression can be expressed as:

ŷi = g(xi)

Similarly, we could express a single layer neural network as:

ŷi = g(f (xi))

And a neural network with 2 hidden would be:

ŷi = g(f (h(xi)))

8 / 25



Notation

Because neural networks can contain many hidden layers, we’ll
introduce the following notation to keep track of the model’s
structure:

Ï xi will remain the p-dimensional vector of input features (ie:
the i th row in our data, if it’s in a tabular format)

Ï Superscripts, such as w(1), will indicate the layer of object
Ï z() will indicate the linear combination of weights and inputs in

a particular layer
Ï a() will indicate the activated output of a particular layer
Ï b will be used to indicate bias terms in linear combinations

9 / 25



Simple Example

Consider a single input feature, X1, and a neural network with two
hidden layers that each contain only a single neuron:

b(1)
1 +w (1)

1 X1 = z(1)
1 → g(z(1)

1 )= a(1)
1

The output of the first (and only) neuron in our first hidden layer is
a(1)

1 . The model then uses this output as an input to the next
hidden layer:

b(2)
1 +w (2)

1 a(1)
1 = z(2)

1 → g(z(2)
1 )= a(2)

1

A similar process repeats once more, yielding Ŷ = a(3)
1

10 / 25



Learning the Parameters

Similar to logistic regression, we can use the cross-entropy cost for
binary/categorical Y :

Cost=−1
n

n∑
i=1

(
yi log(ŷi))+ (1−yi)log(1− ŷi))

)
We can use gradient descent to optimize the model’s weights and
biases.

11 / 25



Learning the Parameters

Let’s first solve for ∂Cost
w (3)

1
using chain rule:

∂Cost
w (3)

1
= ∂Cost

ŷ
∂ŷ
z(3)

1

∂z(3)
1

∂w (3)
1

This works because ŷ is a function of z(3)
1 (sigmoid), and z(3)

1 is a
function of w (2)

1

12 / 25



Learning the Parameters

For our simple example:

Ï ∂Cost
ŷ = y

ŷ − 1−y
1−ŷ

Ï ∂ŷ
z(3)

1
= g(z(3)

1 )(1−g(z(3)
1 ))

Ï ∂z(3)
1

∂w (3)
1

= a(2)
1

Notice how calculating this component of the gradient requires us
to pass data, X1, through the network to obtain the quantities z(3)

1 ,
a(2)

1 and ŷ

13 / 25



Learning the Parameters

Next, let’s look at the gradient vector component ∂Cost
w (2)

1
:

∂Cost
w (2)

1
= ∂Cost

ŷ
∂ŷ
z(3)

1

∂z(3)
1

∂a(2)
1

∂a(2)
1

∂z(2)
1

∂z(2)
1

∂w (2)
1

Ï This is similar to our previous expression after realizing a(2)
1 is a

function of w (1)
1Ï Note that gradient components for each bias term are

calculated similarly

14 / 25



Backpropagation

Ï The gradient components of parameters closer to the input
layer reuse quantities that were calculated for components
closer to the network’s output

Ï ∂Cost
ŷ and ∂ŷ

z(3)
1

in our example
Ï This makes it beneficial to work backwards through the model

when calculating the components of the gradient vector
Ï Thus, the application of chain rule to find the gradient of a

neural network is often called the backpropagation algorithm

15 / 25



Forward propogation

Ï You’ll also hear the term forward-propagation (or forward pass)
referring to the calculation of the cost function function for an
observation (or batch of observations)

Ï As we previously mentioned, the gradient requires several
intermediate quantities that are calculated during
forward-propagation

Ï Thus, the process for optimization begins by feeding an
observation into the existing network (forward-propagation),
then updating the network’s parameters via back-propagation

16 / 25



Another Example

Now let’s suppose our input layer contains two features, X1 and X2,
or x, and our model contains one hidden layer with three neurons:

Input #1

Input #2
Output

Hidden
layer

Input
layer

Output
layer

How many weights and biases are needed as parameters in this
model?

17 / 25



Another Example

The first neuron in the first hidden layer is given by:

b(1)
1 +w (1)

11 X1+w (1)
12 X2 = z(1)

1 → g(z(1)
1 )= a(1)

1

The second by:

b(1)
2 +w (1)

21 X1+w (1)
22 X2 = z(1)

2 → g(z(1)
2 )= a(1)

2

And the third is defined similarly.

18 / 25



Another Example

In matrix notation:

z(1) = b(1)+W(1)x

and

a(1) = g(z(1))

Ï As you might expect, we can then find the necessary pieces of
the back-propagation algorithm using chain rule and matrix
calculus shortcuts

Ï We’ll largely rely on software (autograd) to handle this for us,
with the exception of one homework question

19 / 25



Activation Functions

Most modern neural networks prefer the ReLU (rectified linear unit)
activation function to the sigmoid function because it can be
computed and stored more efficiently:

g(z)= 0 if z < 0
g(z)= z if z ≥ 0

The derivative of ReLU function is simple (albeit discontinuous), as
it’s 1 if z > 0 and 0 otherwise. Software packages will take the
derivative at z = 0 to be zero to promote greater sparsity.

20 / 25



Activation Functions

Most modern neural networks prefer the ReLU (rectified linear unit)
activation function to the sigmoid function because it can be
computed and stored more efficiently:

g(z)= 0 if z < 0
g(z)= z if z ≥ 0

The derivative of ReLU function is simple (albeit discontinuous), as
it’s 1 if z > 0 and 0 otherwise. Software packages will take the
derivative at z = 0 to be zero to promote greater sparsity.

20 / 25



ReLU vs. Sigmoid

Note: the ReLU function is scaled by 1/5 in this example for ease of comparison. The function is scale invariant
when used as an activation function in a neural network.

21 / 25



Remarks on Network Depth

Ï Neural networks first became popular in the 1980s, but in the
1990s methods like random forests, boosting, and support
vector machines received far greater attention

Ï This was partly due to the computational challenges of neural
networks and partly due to misunderstandings related to
network depth

Ï In the 2000s, deep neural networks (ones with many hidden
layers) were found to be successful in image classification

Ï In 2012, a deep neural network architecture named “AlexNet”
led to a boom in deep learning by winning the ImageNet
recognition challenge with accuracy of 84.7% (10.8% better
than the nearest competitor)

Ï Network depth combined with the use of GPUs for efficient
training on massive datasets led to this performance

22 / 25



Remarks on Network Depth

Ï Neural networks first became popular in the 1980s, but in the
1990s methods like random forests, boosting, and support
vector machines received far greater attention

Ï This was partly due to the computational challenges of neural
networks and partly due to misunderstandings related to
network depth

Ï In the 2000s, deep neural networks (ones with many hidden
layers) were found to be successful in image classification

Ï In 2012, a deep neural network architecture named “AlexNet”
led to a boom in deep learning by winning the ImageNet
recognition challenge with accuracy of 84.7% (10.8% better
than the nearest competitor)

Ï Network depth combined with the use of GPUs for efficient
training on massive datasets led to this performance

22 / 25



Intuition on the Role of Hidden Layers

Ï Why do deeper networks perform better on certain types of
data, such as images?

Ï Intuitively, each hidden learning is learning features that are
derived from the previous layer

Ï Hidden layer 1 learns patterns that are simple linear
combinations of the inputs (perhaps vertical and horizontal
edges of varying lengths and directions)

Ï Hidden layer 2 learns patterns that are linear combinations of
the features identified in hidden layer 1 (perhaps simple shapes,
curves, etc.)

Ï The next hidden layer can then learn patterns that are
combinations of those shapes, curves, etc.

Ï At some point, the complexity of the current features provides
enough information to make accurate predictions

23 / 25



Intuition on the Role of Hidden Layers

Ï Why do deeper networks perform better on certain types of
data, such as images?

Ï Intuitively, each hidden learning is learning features that are
derived from the previous layer

Ï Hidden layer 1 learns patterns that are simple linear
combinations of the inputs (perhaps vertical and horizontal
edges of varying lengths and directions)

Ï Hidden layer 2 learns patterns that are linear combinations of
the features identified in hidden layer 1 (perhaps simple shapes,
curves, etc.)

Ï The next hidden layer can then learn patterns that are
combinations of those shapes, curves, etc.

Ï At some point, the complexity of the current features provides
enough information to make accurate predictions

23 / 25



Intuition on the Role of Hidden Layers

Image Credit: https://www.datarobot.com/blog/a-primer-on-deep-learning/

24 / 25

https://www.datarobot.com/blog/a-primer-on-deep-learning/


Closing Remarks

Ï Neural networks involve a lot of parameters and can learn very
complex relationships, but this generally requires a lot of
training data

Ï The simple networks we discussed today tend not to be
commonly used

Ï They aren’t well-equipped to handle spatial structures, which
make them less effective at applications involving image/textual
data

Ï They tend to overfit “flat” or “tabular” data to a greater extent
than methods like random forests or boosted ensembles

Ï Next we’ll learn about convolutional neural networks, a
variation utilizes spatial relationships among features and excels
in computer vision applications

25 / 25


