Introduction to Neural Networks

Ryan Miller

22 Grinnell College
Statistics
1/25



Review of Logistic Regression

Logistic regression uses a set of features, Xi,..., X, to predict a
binary outcome, Y, using the following structure:

yi = Bern(m = g(z;)) where g(z;) = 1+eX[1)(—Z,')

Here zj = Wo + Wi Xj2 + WaXj2 +... is the linear predictor for the ith
observation.

22 Grinnell College
Statistics
2/25



Review of Logistic Regression

The model’s weights, {wo,w1,...,wp}, are found by optimizing the
cross-entropy cost function:

Cost= -1 z (vilog(g(z:)) +(1-yi)log(1—g()))

This optimization relies upon differentiating the cost function with
respect to the unknown weights, which we can express using chain
rule:

inp — 0Cost 08 0z
Gradient = g 9z ow

22 Grinnell College

Statistics

3/25



Review of Logistic Regression

We can represent logistic regression in the following diagram, where
a weight combination of inputs goes into the sigmoid function (red
dot) which produces the output:

Input #1 —

Input #2 — > — Qutput
Input #3 — /

Input #4 —

22 Grinnell College

Statistics

4/25



Neural Networks

> In logistic regression, the observed features are weighted then
passed into the sigmoid function and mapped to an output
» Neural networks derive new features through a similar process
> That is, weighted combinations of observed features are passed
into an activation function resulting in a neuron (or hidden unit)
> We can set up the structure of our model to contain any
number of neurons
> The model’s neurons form a hidden layer of new features
> A weighted combination of these neurons can then be passed
into another activation function to predict the output
> This structure is a single layer neural network (see next slide)

22 Grinnell College
Statistics

5/25



Single Layer Neural Networks

Input Hidden Output
layer layer layer
Input #1 — ——
Input #2 —
‘4>‘H Output
Input #3 —
Input #4 —

\.

22 Grinnell College
Statistics
6/25



Network Depth

Our previous example used a single hidden layer, but in practice we
can add more hidden layers:

M;/‘
R
;.;.

)
/"g“
-

input layer

4
O
<

)

.
. . output layer

hidden layer 1 hidden layer 2

22 Grinnell College

Statistics

7/25



Neural Nets vs. Logistic Regression

Logistic regression can be expressed as:

Similarly, we could express a single layer neural network as:

yi=g(f(xi))

And a neural network with 2 hidden would be:

yi=g(f(h(xi)))

22 Grinnell College

Statistics

8/25



Notation

Because neural networks can contain many hidden layers, we'll
introduce the following notation to keep track of the model's
structure:

> x; will remain the p-dimensional vector of input features (ie:
the it" row in our data, if it's in a tabular format)

> Superscripts, such as w1, will indicate the layer of object

» 20 will indicate the linear combination of weights and inputs in
a particular layer

» a0 will indicate the activated output of a particular layer

b will be used to indicate bias terms in linear combinations

v

22 Grinnell College
Statistics
9/25



Simple Example

Consider a single input feature, Xi, and a neural network with two
hidden layers that each contain only a single neuron:

bgl) + Wl(l)Xl = z{l) - g(z§1)) = agl)

The output of the first (and only) neuron in our first hidden layer is
agl). The model then uses this output as an input to the next
hidden layer:

b§2) + W1(2)a§1) = zfz) — g(ziz)) = agz)

A similar process repeats once more, yielding Y= aga)

22 Grinnell College
Statistics

10/25



Learning the Parameters

Similar to logistic regression, we can use the cross-entropy cost for
binary/categorical Y:

Cost=—1%" (yilog(§:)) + (1 -yi)log(1-)))
i=1

We can use gradient descent to optimize the model’s weights and
biases.

22 Grinnell College
Statistics
11/25



Learning the Parameters

Let's first solve for 6C(‘;5)t using chain rule:
w.

1

3
dCost _ dCost 0y 6Z§ :

W1(3) y z{3) 6Wf3)

This works because y is a function of 2{3) (sigmoid), and

(2)

function of wy

22 Grinnell College

Statistics

(

2

3) is

a

12/25



Learning the Parameters

For our simple example:

>M=¥ 1oy

b G 3
> % =8(z7)(1-g(z"))
Z
28 (2
> 6W1f3) :al

Notice how calculating this component of the gradient requires us
to pass data, Xi, through the network to obtain the quantities z§3),

352) and y

22 Grinnell College
Statistics
13/25



Learning the Parameters

Next, let's look at the gradient vector component &gs)t:
Wy

3) 4 (2 2
dCost _ dCost 0 62{ ) 035) 02{ )

W1(2) y z§3) 0352) 62{2) 6W{2)

> This is similar to our previous expression after realizing A isa

1
function of Wl(l)

> Note that gradient components for each bias term are
calculated similarly

22 Grinnell College

Statistics
14/25



Backpropagation

> The gradient components of parameters closer to the input
layer reuse quantities that were calculated for components
closer to the network's output

» OCost jn4 6—}3’ in our example
v 203

» This makes it bleneficial to work backwards through the model
when calculating the components of the gradient vector
> Thus, the application of chain rule to find the gradient of a
neural network is often called the backpropagation algorithm

22 Grinnell College
Statistics

15/25



Forward propogation

> You'll also hear the term forward-propagation (or forward pass)
referring to the calculation of the cost function function for an
observation (or batch of observations)
> As we previously mentioned, the gradient requires several
intermediate quantities that are calculated during
forward-propagation
> Thus, the process for optimization begins by feeding an
observation into the existing network (forward-propagation),
then updating the network’s parameters via back-propagation

22 Grinnell College
Statistics

16 /25



Another Example

Now let's suppose our input layer contains two features, X1 and Xo,
or x, and our model contains one hidden layer with three neurons:

Input Hidden Output
layer layer layer

@
.—> — Output

Input #1 —
Input #2 —
How many weights and biases are needed as parameters in this
model?

22 Grinnell College

Statistics

17/25



Another Example

The first neuron in the first hidden layer is given by:

B 4 DX+ w3 = 2 g(20) < o)

The second by:

B 4w, + w3 = 2 (o) < of)

And the third is defined similarly.

22 Grinnell College

Statistics

18/25



Another Example

In matrix notation:

S —p@ - Wy

and

alt) = g(zM)

> As you might expect, we can then find the necessary pieces of
the back-propagation algorithm using chain rule and matrix
calculus shortcuts
> We'll largely rely on software (autograd) to handle this for us,
with the exception of one homework question
22 Grinnell College

Statistics

19/25



Activation Functions

Most modern neural networks prefer the ReLU (rectified linear unit)
activation function to the sigmoid function because it can be
computed and stored more efficiently:

g(z)=0 if z<0
g(z)==z if z=0

22 Grinnell College
Statistics
20/25



Activation Functions

Most modern neural networks prefer the ReLU (rectified linear unit)
activation function to the sigmoid function because it can be
computed and stored more efficiently:

g(z)=0 if z<0
g(z)==z if z=0

The derivative of ReLU function is simple (albeit discontinuous), as
it's 1 if z>0 and 0 otherwise. Software packages will take the
derivative at z=0 to be zero to promote greater sparsity.

22 Grinnell College
Statistics
20/25



ReLU vs. Sigmoid

e
A sigmoid
— RelLU
©
<)
© ]
o
)
(=]
<
=]
[aY)
N+
o
e T T T T \
-4 -2 0 2 4

z

Note: the ReLU function is scaled by 1/5 in this example for ease of comparison. The function is scale invariant
when used as an activation function in a neural network.

22 Grinnell College

Statistics
21/25



Remarks on Network Depth

» Neural networks first became popular in the 1980s, but in the
1990s methods like random forests, boosting, and support
vector machines received far greater attention

> This was partly due to the computational challenges of neural
networks and partly due to misunderstandings related to
network depth

22 Grinnell College

Statistics

22/25



Remarks on Network Depth

» Neural networks first became popular in the 1980s, but in the
1990s methods like random forests, boosting, and support
vector machines received far greater attention

> This was partly due to the computational challenges of neural
networks and partly due to misunderstandings related to
network depth

> In the 2000s, deep neural networks (ones with many hidden
layers) were found to be successful in image classification

> |n 2012, a deep neural network architecture named “AlexNet"
led to a boom in deep learning by winning the ImageNet
recognition challenge with accuracy of 84.7% (10.8% better
than the nearest competitor)

> Network depth combined with the use of GPUs for efficient
training on massive datasets led to this performance

22 Grinnell College
Statistics

22/25



Intuition on the Role of Hidden Layers

> Why do deeper networks perform better on certain types of
data, such as images?

22 Grinnell College
Statistics
23/25



Intuition on the Role of Hidden Layers

> Why do deeper networks perform better on certain types of

data, such as images?
> Intuitively, each hidden learning is learning features that are
derived from the previous layer

» Hidden layer 1 learns patterns that are simple linear
combinations of the inputs (perhaps vertical and horizontal
edges of varying lengths and directions)

» Hidden layer 2 learns patterns that are linear combinations of
the features identified in hidden layer 1 (perhaps simple shapes,
curves, etc.)

» The next hidden layer can then learn patterns that are
combinations of those shapes, curves, etc.

> At some point, the complexity of the current features provides
enough information to make accurate predictions

22 Grinnell College
Statistics
23/25



Intuition on the Role of Hidden Layers

» ] P D
(1] ) 1= = =

. "eslmr 1) u
'Ci' - " I
" vy By .0 S

—r— LY Vaely BT N

| >
= - ._. "'.y s =

Image Credit: https://www.datarobot.com/blog/a-primer-on-deep- learning/

22 Grinnell College
Statistics

24 /25


https://www.datarobot.com/blog/a-primer-on-deep-learning/

Closing Remarks

> Neural networks involve a lot of parameters and can learn very
complex relationships, but this generally requires a lot of
training data

» The simple networks we discussed today tend not to be

commonly used
> They aren’t well-equipped to handle spatial structures, which
make them less effective at applications involving image/textual
data
> They tend to overfit “flat” or “tabular” data to a greater extent
than methods like random forests or boosted ensembles
> Next we'll learn about convolutional neural networks, a
variation utilizes spatial relationships among features and excels

in computer vision applications

22 Grinnell College
Statistics

25/25



