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Introduction

In our toy example, x1 and x2 had similar scales (ie: similar standard
deviations), but what if we multiplied all values of x2 by 100?
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Introduction (cont.)

This same issue doesn’t exist for decision trees, but why?
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Pre-processing

Decision trees are considered scale-invariant, meaning they are not
influenced by the scaling or normalizing the input features.
Conversely, KNN is sensitive to scale, so data must be pre-processed
using a re-scaling step:

1. Standardization: x∗
i = xi−mean(x)

sd(x)

2. Robust scaling: x∗
i = xi−median(x)

IQR(x)

3. Min-Max scaling: x∗
i = xi−min(x)

max(x)−min(x)
4. Max-Absolute scaling: x∗

i = xi
max(|x |)
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Re-scaling

Ï Standardization forces features to have a mean of zero and a
standard deviation of one

Ï Robust scaling forces features to have a median of zero, and it
can be beneficial for data with large outliers

Ï Min-Max scaling maps each feature onto a [0,1] interval, which
can have computational advantages

Ï Max-Absolute scaling is similar to Min-Max scaling, but the
output range is [-1,1] and it will preserve exact zeros (important
for sparse data)
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Scaling vs. Normalization

Scaling changes the range of your data, it does not change the
distributional shape:
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Normalization

If you’d like to change the distributional shape of your data to
reduce the impact of skew/outliers, three strategies are:

1. Log-transformation - simply taking the logarithm of each of the
variable’s values

2. Box-Cox transformation - x∗
i = xλi −1

λ for λ ̸= 0 and xi > 0
3. Quantile mapping - map each quantile of the observed data to

the corresponding quantile of a Unif (0,1) distribution
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Normalization

Raw Data

F
re

qu
en

cy

0 200 400 600 800

0
30

0

Log

F
re

qu
en

cy

−2 0 2 4 6

0
10

0

Box−Cox (lam = 0.2)

F
re

qu
en

cy

0 5 10

0
40

Quantile Mapping
F

re
qu

en
cy

0.0 0.4 0.8

0
40

10
0

8 / 12



One-hot Encoding

Many machine learning algorithms do not possess the native ability
to work with categorical features. Thus, categorical features must
be mapped to numerical values via one-hot encoding as a
pre-processing step:
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One-hot Encoding

Dropping the first dummy variable is sometimes done to prevent
redundancy. In our example colleges in Iowa are still identifiable via
having zeros in both dummy variables.
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Guidelines

Ï Be aware of algorithms that are sensitive to scale, such as KNN
Ï There’s rarely any harm introduced by re-scaling, so its sensible

pre-processing step in most applications
Ï Use exploratory visualizations to identify features with highly

skewed distributions or extreme outliers and consider
normalizing transformations

Ï Represent categorical features using one-hot encoding
Ï Be aware that dropping the first dummy variable is beneficial in

models like linear regression where linear dependencies among
predictors cause problems

Ï Next week we’ll learn about cross-validation, which will provide
us a data-driven tool for determine which pre-processing steps
improve model performance
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What to Know for our Third Quiz

1. Why re-scaling is important for KNN but not for decision trees
2. The difference between re-scaling and normalization
3. How a categorical feature is represented before and after

one-hot encoding
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