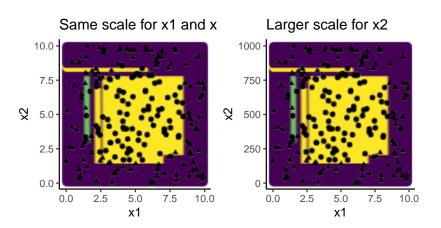

Data Preparation and Pre-processing

Ryan Miller

Introduction


In our toy example, x_1 and x_2 had similar scales (ie: similar standard deviations), but what if we multiplied all values of x_2 by 100?

Introduction (cont.)

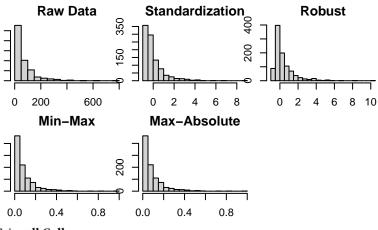
This same issue doesn't exist for decision trees, but why?

Pre-processing

Decision trees are considered *scale-invariant*, meaning they are not influenced by the scaling or normalizing the input features.

Conversely, KNN is sensitive to scale, so data must be *pre-processed* using a re-scaling step:

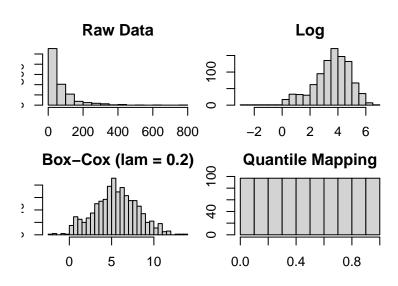
- 1. **Standardization**: $x_i^* = \frac{x_i \text{mean}(x)}{\text{sd}(x)}$
- 2. **Robust scaling**: $x_i^* = \frac{x_i \text{median}(x)}{\text{IQR}(x)}$
- 3. Min-Max scaling: $x_i^* = \frac{x_i \min(x)}{\max(x) \min(x)}$
- 4. Max-Absolute scaling: $x_i^* = \frac{x_i}{\max(|x|)}$


Re-scaling

- Standardization forces features to have a mean of zero and a standard deviation of one
 - ▶ Robust scaling forces features to have a median of zero, and it can be beneficial for data with large outliers
- ► Min-Max scaling maps each feature onto a [0,1] interval, which can have computational advantages
 - Max-Absolute scaling is similar to Min-Max scaling, but the output range is [-1,1] and it will preserve exact zeros (important for sparse data)

Scaling vs. Normalization

Scaling changes the range of your data, it does not change the distributional shape:


Normalization

If you'd like to change the distributional shape of your data to reduce the impact of skew/outliers, three strategies are:

- 1. Log-transformation simply taking the logarithm of each of the variable's values
- 2. Box-Cox transformation $x_i^* = \frac{x_i^{\lambda} 1}{\lambda}$ for $\lambda \neq 0$ and $x_i > 0$
- 3. Quantile mapping map each quantile of the observed data to the corresponding quantile of a Unif(0,1) distribution

Normalization

One-hot Encoding

Many machine learning algorithms do not possess the native ability to work with categorical features. Thus, categorical features must be mapped to numerical values via **one-hot encoding** as a pre-processing step:

IA
IA
MN
VT
MN

College	State = "IA"	State = "MN"	State = "VT"
Grinnell College	1	0	0
University of lowa	1	0	0
University of Minnesota	0	1	0
Middlebury College	0	0	1
Carlton College	0	1	0

One-hot Encoding

Dropping the first dummy variable is sometimes done to prevent redundancy. In our example colleges in lowa are still identifiable via having zeros in both dummy variables.

College	State]	College	State = "MN"	State = "VT"
Grinnell College	IA		Grinnell College	0	0
University of Iowa	IA		University of lowa	0	0
University of Minnesota	MN		University of Minnesota	1	0
Middlebury College	VT		Middlebury College	0	1
Carlton College	MN		Carlton College	1	0

Guidelines

- Be aware of algorithms that are sensitive to scale, such as KNN
 - ► There's rarely any harm introduced by re-scaling, so its sensible pre-processing step in most applications
- Use exploratory visualizations to identify features with highly skewed distributions or extreme outliers and consider normalizing transformations
- Represent categorical features using one-hot encoding
 - Be aware that dropping the first dummy variable is beneficial in models like linear regression where linear dependencies among predictors cause problems
- Next week we'll learn about cross-validation, which will provide us a data-driven tool for determine which pre-processing steps improve model performance

What to Know for our Third Quiz

- 1. Why re-scaling is important for KNN but not for decision trees
- 2. The difference between re-scaling and normalization
- 3. How a categorical feature is represented before and after one-hot encoding

