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Introduction

Ï Up until this point we’ve exclusively used two algorithms, KNN
and decision trees, to allow us to focus on other aspects of
machine learning

Ï This included training vs. testing, pre-processing pipelines,
cross-validation, hyperparameter selection, and performance
evaluation

Ï For the next few weeks we will expand our toolbox of
algorithms, focusing on methods that are suitable for “flat” or
“tabular” data

Ï Today’s focus is linear regression, which I assume you have
some familiarity with already
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Linear Regression

Linear regression is a supervised method that expresses the outcome
as a linear combination of predictors:

yi = f (xi)+Noise

where: f (xi)=w0+w1xi1+w2xi2+ . . .+wpxip

Ï In machine learning, the coefficients, {w1,w2, . . . ,wp}, are called
“weights” and the intercept, w0, is called the “bias”

Ï Regression is a parametric method as it uses a fixed number
of parameters (weights) to define the functional form relating
the predictors and outcome

Ï KNN and decision trees are non-parametric, as their structure is
determined by the data, not a pre-defined function
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Linear Regression Example

Consider predicting the resting metabolic rate of an individual using
their body weight. Here the raw data looks like a single predictor
and the outcome:

weight_lbs rate_kcal

104.79 1079
106.68 1146
108.78 1115
110.46 1161
120.96 1325

128.94 1351
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Linear Regression Example (cont.)

We can apply the linear regression algorithm, which estimates the
parameters w0 and w1 to minimize the error on the training data:
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Does this seem like a high bias or a high variance model? Could we
manipulate this tradeoff using the current model?
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Feature Expansion

To add flexibility to our linear model, we might expand our single
predictor using polynomials:

X1 X2 X3 rate_kcal

104.79 10980.94 1150693 1079
106.68 11380.62 1214085 1146
108.78 11833.09 1287203 1115
110.46 12201.41 1347768 1161
120.96 14631.32 1769805 1325

128.94 16625.52 2143695 1351

We’re now using 3 columns to represent an individual’s body weight:
weight, weight squared, and weight cubed.
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Polynomials

A linear regression model fit to the expanded data is shown in red:
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Did feature expansion improve the accuracy of our model on the
training data?
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Polynomials (cont.)

The second model estimated 3 weight parameters (and 1 bias) from
the data, it has greater flexibility to represent small trends.
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However, more flexibility is not always better, as the blue line
depicts an 8th degree polynomial expansion. See any problems?
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Discretization

A simple alternative to polynomial expansion is discretization:

(90.3,143] (143,196] (196,248] (248,301] rate_kcal
1 0 0 0 1079
1 0 0 0 1146
1 0 0 0 1115
1 0 0 0 1161
1 0 0 0 1325
1 0 0 0 1351

The idea is to split a numeric predictor in to categories and
represent them using one-hot encoding.

9 / 15



Discretization (cont.)

The discretizing body weight into 4 equally spaced bins yields the
following model:
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What are some strengths/weaknesses of this approach?
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Splines

Splines are an alternative without some of the negative aspects of
polynomials and discretization:

X1 X2 X3 rate_kcal

0.177 0.013 0.000 1079
0.196 0.016 0.000 1146
0.217 0.021 0.001 1115
0.233 0.024 0.001 1161
0.318 0.054 0.003 1325

0.366 0.082 0.006 1351

Basis splines, or “b-splines”, use a basis matrix to represent
piecewise polynomials that connect at specified interior knots
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Splines (cont.)

Polynomials with degree = 1 are just lines, the model below
demonstrates a b-spline with 3 knots and degree = 1:
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Splines (cont.)

Higher degree splines ensure smoothness by requiring continuity of
derivatives up to the order degree minus one (so quadratic splines
require continuity of the first derivative, or the slope at the location
of the knot):
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Splines (cont.)

The polynomial degree and number of knots can be used to
manipulate the flexibility of b-splines:
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Ï Red: degree=3 polynomial
Ï Green: degree=3 b-spline with knots at 150, 200, 250
Ï Blue: degree=2 b-spline with knots at 110, 150, 180, 200, 250
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What to Know for the Next Quiz

Ï How regression fits into the supervised learning framework
Ï How concepts like training/testing, the bias-variance tradeoff,

and feature expansion apply to regression
Ï A basic understanding of how certain types of feature

expansions (discretization, polynomials, and splines) influence
the flexibility of a regression

Ï In particular, be familiar with the visual differences in the
prediction lines for a model with a single predictor
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