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Introduction

Linear regression is a supervised learning approach that models the
dependence of a numeric outcome on a set of predictors as linear:

Y =wo +w1X1+w2X2+ . . .+wpXp +ϵ

Ï When Y is a binary variable, this model is problematic because
predicted values can fall outside of [0,1]
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Generalized Linear Models

Ï Generalized Linear Models offer a theoretical framework for
adapting the basic structure of linear regression to classification
tasks

Ï To begin, linear regression can be viewed as the model:

yi ∼N(zi ,σ), where: zi =wo +w1xi1 +w2xi2 + . . .

Ï This model has two components:
Ï The linear predictor, z (called a prediction score by data

scientists)
Ï A probability model that explains some of the variability in the

outcome
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Logistic Regression

Ï The Normal distribution isn’t suitable for a binary outcome, but
the Bernoulli distribution is:

Y ∼Ber(g(Z ))

Ï The mean of a Bernoulli distribution is Pr(Y = 1)
Ï So, we must transform our linear predictors using a function,

g(), such that only inputs between 0 and 1 are possible
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Logistic Regression

Logistic regression is a generalized linear model that uses the
Bernoulli distribution and the sigmoid function:

g(Z )= 1
1+exp(−Z)

This function maps prediction scores to probabilities, where the
observed data (ie: yi = 0 or yi = 1), are
considered samples from a Bernoulli distribution with a mean of g(Z ):
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Logistic Regression Curves

The shape of the sigmoid curve depends upon the slope (ŵ1) and
intercept (ŵ0):
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Logistic Regression (summary)

Putting this all together, logistic regression uses the training data to
estimate weights, {w0,w1, . . . ,wp}, in the model:

Pr(Y = 1)= g(Z )= 1
1+exp(−(w0+w1X1+w2X2+...))

We will cover the details of how these weights are estimated in our
next unit.
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Softmax Regression

Ï Logistic regression is designed for binary outcomes; however,
the method can be generalized to multi-label classification
settings

Ï Softmax regression, also known as multinomial logistic
regression, models the probability of class membership for each
class via:

Pr(yi = k)= exp(wT
k xi )∑Nk

j=1 exp(wT
j xi )

Ï Here Nk is the number of categories
Ï Notice the numerator is the exponent of the linear predictor for

the category of interest
Ï The denominator is the sum of the exponents of the linear

predictors for all categories
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What to Know for the Next Quiz

Ï Logistic regression is used to model a binary outcome via the
sigmoid function and a linear predictor

Ï Softmax (multinomial) regression is used for nomial outcomes
Ï How the logistic regression (sigmoid) curve looks for various

different weights
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