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Introduction

Consider a basic linear regression model:

Y =w0+w1X1+w2X2+ . . .+wpXp +ϵ

We’ll focus more on these details later, but we typically find the
optimal values of the model’s weight parameters, {w0,w1, . . . ,wp}, by
minimizing a cost function that expresses the model’s errors as a
function of these parameters.

Cost= 1
n

n∑
i=1

(yi − ŷi)2 = 1
n (y−Xŵ)T (y−Xŵ)

For quantitative outcomes, regression usually will use the squared
error cost function (stated above).
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Introduction (cont.)

Ï We’ve already seen how to reduce the bias of a linear model
using feature expansion (splines, discretization, etc.)

Ï But what if we’d like to increase the bias of our model to
prevent overfitting?

Ï Regularized regression adds a penalty term to the cost function
that shrinks weight estimates towards zero:

Cost= 1
n (y−Xŵ)T (y−Xŵ)+Pα(ŵ)

Ï P() is a penalty function involving α, a regularization
parameter that controls the trade-off between each term in
the cost function
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Types of Regularization

Ï Ridge regression uses the penalty function:
Pα(w)=α

∑p
j=1 w2

jÏ This penalty function is commonly described as L2
regularization, as the penalty is applied to the L2 norm of the
weight vector

Ï Lasso regression (least absolute shrinkage and selection
operator) uses the penalty function: Pα(w)=α

∑p
j=1 |wj |

Ï This is known as L1 regularization, as the penalty is applied to
the L1 norm of the weight vector

Ï L1 regularization promotes sparsity, a topic we’ll explore in a bit
Ï Regardless of the type of regularization, input features should

be standardized (re-scaled) to ensure the penalty is applied
equally to all variables
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Ridge Regression Example

We can plot the optimal weights (those that minimize the cost
function) at every value of α:
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Ï When α, is large, the penalty term dominates the cost function
and weights are estimated to be zero

Ï When α is zero, we have the ordinary least squares estimates
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Benefits of Regularization

Ï The guiding philosophy of regularization is that when there are
a large number of predictive features small weights, and small
weights should be more likely than large weights

Ï Thus, by encouraging smaller weight estimates, regularization
should yield models that generalize better to new data (ie:
lower out of sample error)

Ï In 1970, Hoerl and Kennard mathematically proved that
regularized regression can always produce a lower RMSE than
ordinary least squares regression
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Benefits of Regularization (cont.)

Mathematically, it’s possible to decompose mean-squared error
(MSE) into bias and variance terms. Here’s a heuristic look at how
these components might look as α is varied:
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Essentially, variance will always decrease faster than bias increases
(as α increases), thereby allowing a relative error rate < 1 for some α
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L1 vs. L2 Regularization

L1 Regularization encourages weight estimates of exactly zero
(sparsity):
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L1 vs. L2 Regularization (cont.)

In two dimensions, weight estimates satisfying ∑p
j=1 |wj | < c exist

within a diamond, while those satisfying ∑p
j=1 w2

j < c exist within an
ellipse. The former is likely to intersect contours of the squared
error cost function at a corner (a weight estimate of exactly zero).
image credit: https://www.researchgate.net/figure/Plot-demonstrating-the-Sparsity-caused-by-the-LASSO-Penalty-
The-plot-shows-the_fig1_317357840
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L1 vs. L2 Regularization (cont.)

In the presence of multicollinearity, lasso favors a single
representative, while ridge will distribute importance across weights:
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Ridge regression’s behavior can add stability (decrease variance)
without increasing bias, making L2 regularization desirable when
there are many correlated features.
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Elastic Net

Elastic net models combine L1 and L2 penalties, seeking to get the
benefits of sparsity (L1) and handling of multicollinearity (L2):
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What’s in a Name?

You don’t need to know this, but understanding how methods get
their names is good historical information:

Ï Ridge regression’s name is from its closed form solution, which
is similar to ordinary least squares, but with a “ridge” added to
the covariance matrix

Ï ŵridge = (XT X+αI)−1XT y vs. ŵols = (XT X)−1XT y
Ï Lasso is an acronym: “least absolute shrinkage and selection

operator”
Ï Elastic net was named by its creators (Zou and Hastie 2005),

who say:
. . . the elastic net simultaneously does automatic variable
selection and continuous shrinkage, and it can select groups
of correlated variables. It is like a stretchable fishing net
that retains ‘all the big fish’.
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What to Know for the Next Quiz?

Ï The basic idea of regularization as a strategy to reduce the
variance (increase the bias) of a model by using a penalty
function to shrink weight estimates towards zero

Ï Be familiar with regularization path plots of weight estimates in
response to α for L1 and L2 penalties

Ï As α increases, weight estimates approach zero for all features,
and as α approaches zero weight estimates approach their
ordinary least squares solution

Ï L1 regularization encourages exact zeros on the path plot
Ï L1 regularization selects representative features from blocks of

correlated variables, while L2 regularization distributes
importance across all features in the block

Ï Know that standardization/scaling is an essential step when
using regularized regression
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