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Introduction

Consider a basic linear regression model:
Y = wo + W1X1 + W2X2+...+ Wpo+€

We'll focus more on these details later, but we typically find the
optimal values of the model's weight parameters, {wg, ws,...,wp}, by

minimizing a cost function that expresses the model’s errors as a
function of these parameters.

M=

_1
Cost—ﬁl
1

(vi=91)?=L(y—Xw) " (y-Xw)
1

For quantitative outcomes, regression usually will use the squared
error cost function (stated above).
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Introduction (cont.)

> We've already seen how to reduce the bias of a linear model
using feature expansion (splines, discretization, etc.)

> But what if we'd like to increase the bias of our model to
prevent overfitting?

22 Grinnell College
Statistics
3/13



Introduction (cont.)

> We've already seen how to reduce the bias of a linear model
using feature expansion (splines, discretization, etc.)

> But what if we'd like to increase the bias of our model to
prevent overfitting?

> Regularized regression adds a penalty term to the cost function
that shrinks weight estimates towards zero:

Cost = £(y = X) " (y - Xi) + Py (W)

> P() is a penalty function involving a, a regularization
parameter that controls the trade-off between each term in
the cost function
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Types of Regularization

> Ridge regression uses the penalty function:
Py(w) = azjﬁ.’zl sz
> This penalty function is commonly described as L2
regularization, as the penalty is applied to the L2 norm of the
weight vector
> Lasso regression (least absolute shrinkage and selection
operator) uses the penalty function: Pg(w) = aZJ’.’zl A
> This is known as L1 regularization, as the penalty is applied to
the L1 norm of the weight vector
> L1 regularization promotes sparsity, a topic we'll explore in a bit
> Regardless of the type of regularization, input features should
be standardized (re-scaled) to ensure the penalty is applied
equally to all variables
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Ridge Regression Example

We can plot the optimal weights (those that minimize the cost
function) at every value of a:

15 15 Weight ESIII’T’I&E%S (Ridge) by a 15 15

weight estimate
10
|

-10

log(a)

» When a, is large, the penalty term dominates the cost function
and weights are estimated to be zero
» When «a is zero, we have the ordinary least squares estimates
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Benefits of Regularization

» The guiding philosophy of regularization is that when there are
a large number of predictive features small weights, and small
weights should be more likely than large weights

» Thus, by encouraging smaller weight estimates, regularization

should yield models that generalize better to new data (ie:
lower out of sample error)

» In 1970, Hoerl and Kennard mathematically proved that

regularized regression can always produce a lower RMSE than
ordinary least squares regression

22 Grinnell College
Statistics

6/13



Benefits of Regularization (cont.)

Mathematically, it's possible to decompose mean-squared error
(MSE) into bias and variance terms. Here's a heuristic look at how
these components might look as a is varied:
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Essentially, variance will always decrease faster than bias increases
(as a increases), thereby allowing a relative error rate <1 for some a
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L1

vs. L2 Regularization

L1 Regularization encourages weight estimates of exactly zero
(sparsity):

LasiP (cv M§§ of 1570%
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L1 vs. L2 Regularization (cont.)

In two dimensions, weight estimates satisfying ZJ’.’zl [wj| < ¢ exist

within a diamond, while those satisfying ZJ’.’:1 sz < ¢ exist within an

ellipse. The former is likely to intersect contours of the squared
error cost function at a corner (a weight estimate of exactly zero).

image credit: https://www.researchgate.net/figure/Plot-demonstrating-the- Sparsity- caused- by- the- LASSO- Penalty-
The-plot-shows-the_figl__317357840
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L1 vs. L2 Regularization (cont.)

In the presence of multicollinearity, lasso favors a single
representative, while ridge will distribute importance across weights:
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Ridge regression’s behavior can add stability (decrease variance)
without increasing bias, making L2 regularization desirable when
there are many correlated features.
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Elastic Net

Elastic net models combine L1 and L2 penalties, seeking to get the
benefits of sparsity (L1) and handling of multicollinearity (L2):
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What's in a Name?

You don't need to know this, but understanding how methods get
their names is good historical information:

> Ridge regression’s name is from its closed form solution, which
is similar to ordinary least squares, but with a “ridge” added to
the covariance matrix
> Wrigge = (XTX+al)IXTy vs. Wois = (XTX)1X Ty
» Lasso is an acronym: “least absolute shrinkage and selection
operator”
> Elastic net was named by its creators (Zou and Hastie 2005),

who say:
the elastic net simultaneously does automatic variable

selection and continuous shrinkage, and it can select groups
of correlated variables. It is like a stretchable fishing net
that retains ‘all the big fish'
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What to Know for the Next Quiz?

> The basic idea of regularization as a strategy to reduce the
variance (increase the bias) of a model by using a penalty
function to shrink weight estimates towards zero
» Be familiar with regularization path plots of weight estimates in
response to a for L1 and L2 penalties
> As a increases, weight estimates approach zero for all features,
and as a approaches zero weight estimates approach their
ordinary least squares solution
» L1 regularization encourages exact zeros on the path plot
> L1 regularization selects representative features from blocks of
correlated variables, while L2 regularization distributes
importance across all features in the block
> Know that standardization/scaling is an essential step when
using regularized regression
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