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Introduction

» Earlier in the semester, we learned about the decision tree
algorithm, which recursively partitioned the data in search of
“purity”

> Despite their interpretability, decision trees are usually
outperformed by other methods such as SVM or KNN

> This is because complex relationships require deep trees (lots of
splits), but deep trees exhibit high variance (they're prone to
overfitting)

» The *random forest** algorithm combines predictions from a
large number of decision trees to combat the overfitting that

often happens with single decision trees

22 Grinnell College
Statistics

2/13



Ensembles

> An ensemble model is a type of model that combines multiple
individual models known as base learners
» In the random forest algorithm, base learners are individual
decision trees that are trained separately from one another
» The final prediction of an ensemble model is determined by
aggregating the predictions from each of its base learners
> This could be simple majority or weighted voting (classification
tasks) or simple or weighted averaging (regression) tasks
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Bagging

Random forests rely upon bagging, or “bootstrap aggregation”, a

procedure where each base learner is trained on a bootstrapped
sample of training data:
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Why might bagging be necessary for an ensemble of decision trees?

Image credit: https://hudsonthames.org/bagging-in-financial-machine-learning-sequential- bootstrapping- python/
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Random Forest

> Bagging allows for some diversity among the base learners used
in a random forest
> However, because bootstrap samples are similar the base
learners will still be very similar unless other steps are taken
» Thus, the random forest algorithm also relies upon feature
subsampling to further enhance the diversity of the base
learners
» Subsampling can be done at the level of the tree, within specific
depths, or at individual nodes (splits)
> Subsampling randomly selects a set of features and the decision
tree splits within that level use only those features
» Combining bagging and subsampling produces trees that are
approximately independent, thereby allowing the random forest
to benefit from the “wisdom of the crowd”
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Random Forest Hyperparameters

The performance of a random forest model depends upon
hyperparameters that impact two different aspects of the algorithm

1. Behavior of the base learners:
> max_depth
> min_samples_split
> min_impurity_decrease
2. How many/what kind of base learners:
> n_estimators
> max_features
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Random Forest Hyperparameters (cont.)

The n_estimators parameter is unique, as performance stabilizes
once enough base learners are included in the forest, and more
adding estimators does not lead to overfitting:
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Fisher's lIris Data
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Single Decision Tree (depth = 3)

Decision Tree Classifier
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Single Decision Tree (depth = 10)

Decision Tree Classifier
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Random Forest (depth = 2)

Random Forest Classifier (depth = 2)
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Random Forest (depth = 3)

Random Forest Classifier (depth = 3)
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What to Know for the Next Quiz

» Understand the core steps of the random forest algorithm:
> Create bootstrapped samples from the training data
> Train a decision tree using a subsample of features on each
bootstrapped sample
> Get final predictions by aggregating the predictions of the
individual decision trees (base learners)
> Have a basic understanding of the role of each major
hyperparameter (max_depth, n_estimators, and
max_features in particular)

22 Grinnell College

Statistics

13/13



