K-Nearest Neighbors and Decision Trees
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Introduction

Last time we introduced toy data with a goal of classifying new
data-points as “healthy” or “unhealthy” using patterns learned from
the training data shown below:
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K-Nearest Neighbors

A simple rule is to classify each new data-point using its nearest
neighbor, or the observation closest to its (x1,x2) coordinates:
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K-Nearest Neighbors

To implement this approach, we a method of identifying neighbors.

m 1/p
da,b = (Z |Xa,j _Xb,j|p)
Jj=1

> Minkowski distance, d,p, measures the distance between
data-points a and b
> The formula sums pairwise coordinate differences across m
dimensions (features)
> The power parameter, p, is chosen by the analyst, with p=2
(euclidean distance) being a popular choice
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K-Nearest Neighbors

Once neighbors are identified they must be used to make
predictions. There are two common ways to do this:

1. Uniform weighting - all neighbors contribute equally, so if 4
of 5 neighbors of the new data-point are “healthy” the
predicted probability of “healthy” is 80%

2. Distance weighting - neighbors are weighted by the inverse of
their distance, allowing closer data-points to contribute more to
the prediction (ie: a weighted proportion)

Note: when the outcome is numeric KNN regression averages the
target variable among neighbors (rather than taking proportions)
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Hyperparameters

KNN will not achieve state-of-the-art performance in most
applications, but it is an interesting algorithm to study because it
illustrates two important ideas in machine learning:

1. hyperparameters - configurable values that must be set before
the algorithm can be used

2. pre-processing - steps that must be applied to the data in
order for the algorithm to be effective

We will discuss pre-processing in our next lecture. For now we'll
focus on hyperparameters, which include:

> k or n_neighbors - the number of neighbors that contribute
to predictions

> p - the power parameter used in Minkowski distance
calculations
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K-Nearest Neighbors Prediction Surface (k=1)
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K-Nearest Neighbors Prediction Surface (k=5)
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K-Nearest Neighbors Prediction Surface (k=35)
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KNN and the Bias-Variance Trade-off

» Smaller values of k lead to more flexible models with low bias
but high variance

> Conversely, larger values of k lead to less flexible models with
smoother decision boundaries that are higher in bias but lower
in variance

» Distance weighting generally produces a smoother decision
boundary than uniform weighting. How might this impact the
bias-variance trade off?
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Decision Trees

Decision trees are trained by recursively partitioning the
p-dimensional feature space (defined by the explanatory variables)
until an acceptable level of homogeneity or “purity” is achieved
within each partition:

1) Starting with a "parent” node, search for a splitting rule that
maximizes the homogeneity or purity of the “child” nodes

2) Next, considering each node that hasn't yet been split, find
another splitting rule that maximizes purity

3) Repeat until a stopping criteria has been reached
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Decision Trees

First Split
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Decision Trees

We can express these recursive splits using a tree structure:
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Determining the Splits

> The decision tree algorithm considers all possible splits for
every feature

> Only split-points that coincide with observed values are checked,

as anything inbetween won't change purity
» Classification trees most often use Gini impurity:

K k
Gini =Y. py(1-py)=1- Y. o
j=1 j=1

» For binary classification, Gini impurity reduces to
p1(1—=p1)+p2(1-p2)
> The split that yields the greatest improvement in Gini impurity
is selected
> Regression trees assess purity using squared error, or
27:1()4 _)A/i)z
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Determining the Splits

In our example the initial node’s purity was:

(0.42-(1-0.42) +0.58 - (1—0.58)) = 0.487
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Determining the Splits

In our example the initial node’s purity was:

(0.42-(1-0.42) +0.58 - (1—0.58)) = 0.487

The first split created child nodes yielding the following purity:

0.82:(0.52:(1-0.52)+0.48-(1-0.48))+0.18-(0-(1-0)+1-(1-1)) = 0.409

Thus, the Gini gain from this split is 0.078
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Stopping the Algorithm

Decision trees can be grown until every terminal node is perfectly
pure; however, such trees will be very overfit to the training data.
We can exploit the bias-variance trade-off in a fitted tree in the
following ways:

1. Restricting the maximum depth of the tree (ie: the number of

sequential rules)
2. Allowing only nodes of sufficient size to be eligible for splitting

3. Requiring a certain improvement in purity for a split to occur

Because all of these are related, it is generally sufficient to focus on
maximum depth when tuning hyperparameters.
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Decision Tree Prediction Surface (max_depth = 1)
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Decision Tree Prediction Surface (max_depth = 4)
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Decision Tree Prediction Surface (max_depth = 8)

Pr(Healthy), depth=8 Predicted Class, depth=8

75

25

0.0

x1 x1

22 Grinnell College

Statistics

19/21



A Few Comments

> KNN produces irregularly shaped decision boundaries that tend
to be overly sensitive to the training data for small values of k

> Decision trees produce rectangular decision boundaries and can
easily overfit the training data if their maximum depth isn't
controlled

» Decision trees are robust to the measurement scale of the

predictive features, while KNN is not
> We will discuss re-scaling (and other data pre-processing steps)
next time
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What to Know for Thursday's Quiz

» The basic steps of the KNN algorithm, including finding
neighbors using distance calculations and generating predicted
values using these neighbors

» The basic steps of the Decision Tree algorithm, including the
concept of making recursive binary splits to improve purity

» The hyperparameters of the KNN and Decision Tree algorithms,
and how each influences the bias-variance trade-off
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