K-Nearest Neighbors and Decision Trees

Ryan Miller

Introduction

Last time we introduced toy data with a goal of classifying *new data-points* as "healthy" or "unhealthy" using patterns learned from the training data shown below:

K-Nearest Neighbors

A simple rule is to classify each new data-point using its *nearest neighbor*, or the observation closest to its (x_1, x_2) coordinates:

K-Nearest Neighbors

To implement this approach, we a method of identifying neighbors.

$$d_{a,b} = \left(\sum_{j=1}^{m} |x_{a,j} - x_{b,j}|^p\right)^{1/p}$$

- Minkowski distance, $d_{a,b}$, measures the distance between data-points a and b
 - The formula sums pairwise coordinate differences across m dimensions (features)
 - The power parameter, p, is chosen by the analyst, with p = 2 (euclidean distance) being a popular choice

K-Nearest Neighbors

Once neighbors are identified they must be used to make predictions. There are two common ways to do this:

- 1. **Uniform weighting** all neighbors contribute equally, so if 4 of 5 neighbors of the new data-point are "healthy" the predicted probability of "healthy" is 80%
- Distance weighting neighbors are weighted by the inverse of their distance, allowing closer data-points to contribute more to the prediction (ie: a weighted proportion)

Note: when the outcome is numeric *KNN regression* averages the target variable among neighbors (rather than taking proportions)

Hyperparameters

KNN will not achieve state-of-the-art performance in most applications, but it is an interesting algorithm to study because it illustrates two important ideas in machine learning:

- 1. **hyperparameters** configurable values that must be set before the algorithm can be used
- 2. **pre-processing** steps that must be applied to the data in order for the algorithm to be effective

We will discuss pre-processing in our next lecture. For now we'll focus on hyperparameters, which include:

- k or n_neighbors the number of neighbors that contribute to predictions
- p the power parameter used in Minkowski distance calculations
- er uniform or distance weighting is used

K-Nearest Neighbors Prediction Surface (k=1)

K-Nearest Neighbors Prediction Surface (k=5)

K-Nearest Neighbors Prediction Surface (k=35)

KNN and the Bias-Variance Trade-off

- ► Smaller values of *k* lead to more flexible models with *low bias* but *high variance*
- Conversely, larger values of k lead to less flexible models with smoother decision boundaries that are higher in bias but lower in variance
- ▶ Distance weighting generally produces a smoother decision boundary than uniform weighting. How might this impact the bias-variance trade off?

Decision Trees

Decision trees are trained by *recursively partitioning* the *p*-dimensional feature space (defined by the explanatory variables) until an acceptable level of homogeneity or "purity" is achieved within each partition:

- 1) Starting with a "parent" node, search for a splitting rule that maximizes the *homogeneity* or *purity* of the "child" nodes
- 2) Next, considering each node that hasn't yet been split, find another splitting rule that maximizes *purity*
- 3) Repeat until a stopping criteria has been reached

Decision Trees

Decision Trees

We can express these recursive splits using a tree structure:

Determining the Splits

- The decision tree algorithm considers all possible splits for every feature
 - Only split-points that coincide with observed values are checked, as anything inbetween won't change purity
- Classification trees most often use Gini impurity:

$$Gini = \sum_{j=1}^{k} p_j (1 - p_j) = 1 - \sum_{j=1}^{k} p_j^2$$

- For binary classification, Gini impurity reduces to $p_1(1-p_1) + p_2(1-p_2)$
 - ► The split that yields the greatest improvement in Gini impurity is selected
- Regression trees assess purity using squared error, or $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$

Determining the Splits

In our example the initial node's purity was:

$$(0.42 \cdot (1 - 0.42) + 0.58 \cdot (1 - 0.58)) = 0.487$$

Determining the Splits

In our example the initial node's purity was:

$$(0.42 \cdot (1 - 0.42) + 0.58 \cdot (1 - 0.58)) = 0.487$$

The first split created child nodes yielding the following purity:

$$0.82 \cdot \left(0.52 \cdot (1-0.52) + 0.48 \cdot (1-0.48)\right) + 0.18 \cdot \left(0 \cdot (1-0) + 1 \cdot (1-1)\right) = 0.409$$

Thus, the Gini gain from this split is 0.078

Stopping the Algorithm

Decision trees can be grown until every terminal node is perfectly pure; however, such trees will be very overfit to the training data. We can exploit the bias-variance trade-off in a fitted tree in the following ways:

- Restricting the maximum depth of the tree (ie: the number of sequential rules)
- 2. Allowing only nodes of sufficient size to be eligible for splitting
- 3. Requiring a certain improvement in purity for a split to occur

Because all of these are related, it is generally sufficient to focus on maximum depth when tuning hyperparameters.

Decision Tree Prediction Surface (max_depth = 1)

Decision Tree Prediction Surface (max_depth = 4)

Decision Tree Prediction Surface (max_depth = 8)

A Few Comments

- ► KNN produces irregularly shaped decision boundaries that tend to be overly sensitive to the training data for small values of *k*
- Decision trees produce rectangular decision boundaries and can easily overfit the training data if their maximum depth isn't controlled
- Decision trees are robust to the measurement scale of the predictive features, while KNN is not
 - We will discuss re-scaling (and other data pre-processing steps)
 next time

What to Know for Thursday's Quiz

- ► The basic steps of the KNN algorithm, including finding neighbors using distance calculations and generating predicted values using these neighbors
- ► The basic steps of the Decision Tree algorithm, including the concept of making recursive binary splits to improve purity
- ► The hyperparameters of the KNN and Decision Tree algorithms, and how each influences the bias-variance trade-off

