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Introduction

» Consider a binary classification task
> Support Vector Machines (SVM) try to find a plane that
separates the two classes in the space of our predictive features
> If no such plane exists, there are two possible solutions
»> Relaxing what we mean by “separate”
> Expanding our feature space to facilitate separation
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Hyperplanes

> A hyperplane is defined by a linear combination:
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> Recognize that multivariable linear regression involves a
hyperplane

> Its hyperplane represents the expected value of a continuous
outcome, Y, estimated via least squares for a set of predictors

> Support vector machines seek a separating hyperplane
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Separating Hyperplanes

Consider two features, X1 and X3, and a binary outcome. It might
be possible to draw several separating hyperplanes:
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Which of these hyperplanes is the better classifier?
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The Maximum Margin Classifier

A hard margin SVM finds the “maximum margin" hyperplane:
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This plane represents the “widest street” between classes, and it is
characterized by “support vectors”, or training data-points that
would change this hyperplane if removed
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The Maximum Margin Classifier

» Consider the constraint: Zj.’:
hyperplane is defined
> This won't impact the direction of the plane, as {1 =1,82 =1}
and {1 =3, B2 = 3} have the same orientation
> The SVM is defined by f1,..., 8, which maximize M in the
expression: y;(Bo+ Bixi1+ Poaxi2+Ppxip) =M Vi=1,...,n
> Here the binary outcome, y;, is encoded as 41 or -1, so the left
side of this expression is the distance from the current
hyperplane to the it" data-point

1ﬁj? =1, which normalizes how our
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The Maximum Margin Classifier

» The coefficients defining the SVM classifier can be found using
the Lagrangian multiplier method
> We will not cover this method in this course (as SVMs are the
only classifier we'll study that use it)
> If you're interested in the mathematical details, | recommend
Robert Berwick's (of MIT) “An Idiot’'s guide to support vector
machines”
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https://web.mit.edu/6.034/wwwbob/svm.pdf
https://web.mit.edu/6.034/wwwbob/svm.pdf

Soft Margin Classifiers

» For non-separable data, we can relax the maximum margin
approach to find a soft margin classifier.

> Now we aim to find f1,..., p that maximize M where
yi(Bo + B1xi,1 + Paxi2+ Bpxip) = M(1—¢;)

> Subject toe=0and ¥/ ;€ <s
> ¢;=0if a point is on the correct side of the margin
> O<ej<1if apoint is within the margin
> ¢;>1if a point is on the wrong side of the margin

> s is controls the total amount of “slack” that is allowed, with

larger values allowing for more “slack”
> As s decreases the tolerance for data-points being on the wrong
side of the hyperplane diminishes
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Soft Margin Classifiers

As s decreases (left to right), the margin M decreases:

A larger s yields a more stable classifier, so the bias-variance
trade-off can be manipulated via the value of s.
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Feature Expansion and Kernel Functions

» Consider the features: {X1, X5}, and recall that the SVM
classifier finds a decision boundary (separating hyperplane) of
the form Bo+ ﬁ1X1 + ,32X2

> We could apply transformations to create a new set of features:
{Xer2’X]?»X22!X1X2}

> Now the decision boundary would have the form:
Bo+ P1X1 + PoXo + B3 X7 + PaX3 + Ps X1 X2
» This corresponds to a non-linear boundary in the original
feature space
> Kernel functions allow for computationally efficient mappings of
the original features to higher dimensions for the purpose of
finding a non-linear decision boundary
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Polynomial Kernel (d =3, y=2)

&

Decision boundaries of poly kernel in SVC
3 .
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Radial Basis Function Kernel

Decision boundaries of rbf kernel in SVC

22 Grinnell College
Statistics
12/14



Sigmoid Kernel

Decision boundaries of sigmoid kernel in SVC
3
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Practical guidance

> SVMs treat each feature equally, so standardization is an
important data preparation step
> The kernel function (type of feature expansion) and “slack”
parameter can be tuned via cross-validation to achieve optimal
classification performance
> sklearn represents “slack” using a parameter C that is
inversely proportional to what we called s
» Other hyperparameters affiliated with certain kernel functions,
such as \gamma can also be tuned in this manner

> Support vector regression is also implemented in sklearn, the
SVM lab will briefly cover this method

» SVMs also have been generalized to multi-class tasks, and use a
one-vs-one scheme in sklearn
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