Analysis of Variance (ANOVA)

Ryan Miller

Introduction

- ➤ The "halo effect" is a hypothesized cognitive bias where a positive impression of one aspect of a person/brand leads to other aspects of that same person/brand being viewed more favorably than warranted
- ➤ Today we'll look at data from the article: "Beauty is Talent: Task Evaluation as a Function of the Performer's Physical Attraction" published in *The Journal of Personality and Social* Psychology in 1974
 - n = 60 undergraduate males scored (from 0 to 25) an essay supposedly written by a female undergraduate
 - ► Each essay was accompanied by a randomly assigned photo of the supposed author from one of the following conditions: "attractive", "unattractive", or "none"

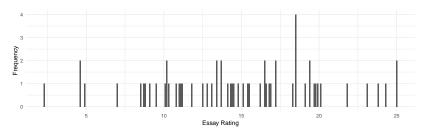
Hypothesis testing

There are two types of hypotheses we might consider for this experiment:

- 1. **global hypothesis** Is an essay's rating associated with the type of photo attached to it?
- 2. **pairwise hypotheses** Do ratings in a particular condition (ie: "attractive") differ from another condition (ie: "none")?
 - ▶ There are 3 different pairwise hypotheses in this example
- ► The pairwise hypotheses can be evaluated using t-tests. However, type I errors are a concern
- ► Analysis of Variance (ANOVA) allows us to evaluate the global hypothesis with a single test

The Null Hypothesis for ANOVA

If the experimental condition and essay ratings are *independent*, we'd expect the ratings in each condition to follow the same distribution. Below is the overall distribution of scores:

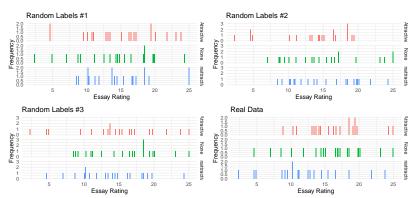


The Null Hypothesis for ANOVA

Under ANOVA's null hypothesis of *no association*, we'd expect ratings in group to be sampled from the overall distribution. Below we simulate this by randomly giving each data-point a group label (unrelated to its actual group):

Hypothesis Testing

ANOVA aims to determine whether the observed distribution *within groups* significantly deviates from what we'd expect if group labels were random (ie: no association between "group" and "rating"):



Predictions

ANOVA relies upon predicted values, where \hat{y}_i is a prediction of y_i , the i^{th} data-point's outcome (rating). Predictions can be made assuming H_0 , or using relationships in the observed data.

Condition (group)	Mean Rating	Standard Deviation	n
Attractive	16.4	4.3	20
None	15.6	5.2	20
Unattractive	12.1	5.4	20
Overall	14.7	5.3	60

Questions: For an essay in the "unattractive photo" group, what is its predicted rating under H_0 ? What might be a better prediction using trends found in the sample data?

Predictions and Models

In ANOVA the null hypothesis reflects a statistical model:

$$y_i = \mu + \epsilon_i$$

- y_i is the i^{th} data-point's observed outcome, μ is an overall mean, and ϵ is an error that is assumed to follow a $N(0,\sigma)$ distribution
 - Because the errors have an expected value of zero, this model predicts $\hat{y}_i = \mu$, the overall mean, for all data-points
- ► This is known as the **null model**

Predictions and Models

ANOVA also considers an alternative model:

$$y_i = \mu_i + \epsilon_i$$

- ▶ This model looks similar, but μ_i is a group-specific mean that depends upon which group the i^{th} data-point belongs to
 - Thus, this model predicts a group-specific mean for data-point, thereby reflecting an association between "group" and "rating"

Theoretical vs. Fitted Models

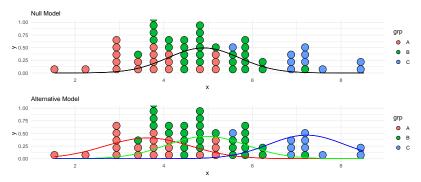
Like when we first learned about regression, it is important to note the distinction between the *theoretical* and *fitted* models in ANOVA:

	Null Model	Alternative Model	
Theoretical	$y_i = \mu + \epsilon_i$	$y_i = \mu_i + \epsilon_i$	
Fitted $\hat{y}_i = \overline{y}$		$\hat{y}_i = \overline{y}_i$	

Here \overline{y} is calculated using the *entire sample*, but \overline{y}_i is the *group-specific mean* calculated using only the subset of cases in the same group as the i^{th} data-point

Comparison of Models

The overarching goal of ANOVA is to determine whether the more complex alternative model fits the data significantly better than the simpler null model:



Question: How might you summarize each model's fit?

Summarizing Model Fit

Each subject's **residual** describes how much their predicted differed from their observed value:

$$r_i = y_i - \hat{y}_i$$
 (Definition of a residual)
= $y_i - \overline{y}$ (Residuals for the null model)

We can *summarize* the total variability of the null model's predictions using a **sum of squares**:

$$SST = \sum_{i} r_i^2$$
 for the null model

We call this *SST* (sum of squares total) because it is the *largest possible* sum of squares (of any reasonable model)

Summarizing Model Fit

The alternative model can also be summarized using a **sum of squares**:

$$SSE = \sum_i r_i^2 \mbox{ for the alternative model}$$
 where $r_i = y_i - \overline{y}_i$ (Residuals for the alt model)

We call this SSE because it summarizes the unexplained variability (errors) of the model that uses "group"

Creating a Test Statistic

- ► In ANOVA we ask: "does the grouping variable improve model fit beyond what might be expected due to random chance?"
 - ► This can be assessed using the **F-test statistic**:

$$F = \frac{(SST - SSE)/(d_1 - d_0)}{\text{Std. Error}}$$

Creating a Test Statistic

- ► In ANOVA we ask: "does the grouping variable improve model fit beyond what might be expected due to random chance?"
 - ► This can be assessed using the **F-test statistic**:

$$F = \frac{(SST - SSE)/(d_1 - d_0)}{\text{Std. Error}}$$

▶ d_1 and d_0 denote the number of parameters estimated in each model, in our example $d_0 = 1$ (the single overall mean) and $d_1 = 3$ (each group's mean)

Creating a Test Statistic

- ► In ANOVA we ask: "does the grouping variable improve model fit beyond what might be expected due to random chance?"
 - ► This can be assessed using the **F-test statistic**:

$$F = \frac{(SST - SSE)/(d_1 - d_0)}{Std. Error}$$

- ▶ d_1 and d_0 denote the number of parameters estimated in each model, in our example $d_0 = 1$ (the single overall mean) and $d_1 = 3$ (each group's mean)
- ► The *F* statistic is the *standardized drop* in the sum of squares *per additional parameter* used by the alternative model

Randomization F-tests

- We started off by considering what the data might look like if we randomly assigned group labels
 - ▶ If we did this many times and calculated the *F*-statistic for each simulation, we could get an idea of how the *F*-statistic is distributed under the null hypothesis
 - ► This StatKey menu allows us to perform such a simulation

Here is a link to the data:

https://remiller1450.github.io/data/halo_effect.csv

The F-distribution

- Under the null hypothesis, the F-statistic follows an F-distribution involving two different degrees of freedom (df) parameters
 - ► The numerator df is $d_1 d_0$
 - ▶ The denominator df is $n d_1$
- ► We can use StatKey to view various *F*-distribution curves
 - ► The observed *F*-statistic is compared to the *F*-distribution to determine the *p*-value

What is the Standard Error?

- We've seen that standard errors tend to look like a measure of variability divided by the sample size
- In the ANOVA setting:

Std. Error =
$$\frac{SSE}{n-d_1}$$

- ► This is the sum of squares of the alternative model divided by its degrees of freedom, $df = n d_1$
- ▶ Using this standard error, the F statistic can be expressed:

$$F = \frac{(SST - SSE)/(d_1 - d_0)}{SSE/(n - d_1)}$$

Simplifying the *F*-statistic

Because this test statistic looks complex, statisticians define the "sum of squares for groups" as: SSG = SST - SSE, making the F-statistic:

$$F = \frac{SSG/(d_1 - d_0)}{SSE/(n - d_1)}$$

This is further simplified by denoting a sum of squares defined by its degrees of freedom as a **mean square**:

$$F = \frac{MSG}{MSE}$$

Here MSG is the mean square of "groups", MSE is the mean square of "error"

What Should You Know?

Calculating the F-statistic and the corresponding p-value is too tedious to perform by hand. But you should be familiar with an **ANOVA table**, which is how software like R summarizes an ANOVA test:

Source	df	Sum Sq.	Mean Sq.	<i>F</i> -statistic	<i>p</i> -value
"Group"	$d_1 - d_0$	SSG	MSG	MSG/MSE	Use $F_{d_1-d_0,n-d_1}$
Residuals	$n-d_1$	SSE	MSE		
Total	$n-d_0$	SST			

You might be asked to fill in the missing components of such a table, interpret a printed table, or relate an ANOVA table to visualizations or models.

What Should You Know? (cont.)

In addition to understanding the components of ANOVA table output, you should have a high-level understanding of the *F*-test:

- ► The ANOVA *F*-test involves a *nominal categorical* explanatory variable and a *quantitative* response variable
- ► The null model states that a single, overall mean is sufficient (suggesting independence), while the alternative model uses group-specific means (suggesting an association)
 - ► The *F*-statistic compares the performance of these two models on the sample data using *sums of squares*
- ▶ Under the null hypothesis of independence, the F-statistic should follow an F-distribution, which is used to determine the p-value
 - ► A small *p*-value provides evidence of an association

