Correlation

Ryan Miller

Introduction

So far, we've discussed *one-sample* and *two-sample* hypothesis tests, with both *categorical* and *quantitative* outcomes

- ► Two-sample tests always involve a binary categorical variable that divides our data into two groups (samples)
 - One-sample tests only involve the outcome variable
- We default to the Z-test when the outcome variable is categorical (expressed using proportions)
- ► We default to the *T*-test when the outcome variable is quantitative (expressed using means)

You might notice these tests span every combination of two variables with the exception of *two quantitative* variables

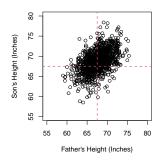
Pearson's Height Data

- ► In the 1880s, the scientific community was fascinated by the idea of quantifying heritable traits
 - ► Karl Pearson, a now famous statistician, collected data on the heights (inches) of 1,078 fathers and their fully-grown first-born sons:

Father	Son
65	59.8
63.3	63.2
65	63.3
65.8	62.8

Pearson's Height Data (cont.)

A **scatter plot** is used to graph two quantitative variables. Here the red lines are each variable's mean.



Does height appear to be heritable?

Pearson's Correlation Coefficient

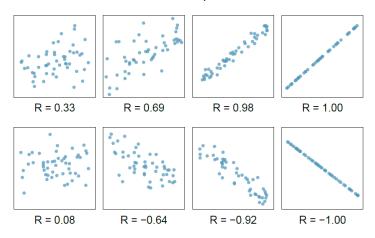
- ► The scatter plot clearly shows that father and son heights are related, but Pearson wanted to *quantify* the *strength of the relationship*
 - Building upon an idea from the French scientist Francis Galton, he developed **Pearson's correlation coefficient**:

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

- ightharpoonup Here, \overline{x} and \overline{y} are the means of each variable, X and Y
 - \triangleright s_x and s_y are the standard deviations of these variables

Correlation and Strength of Linear Association

Pearson's correlation, r, is a standardized measure of the *strength of linear association* between two quantitative variables:



Correlation and Strength of Linear Association (cont.)

Whether a correlation is considered "strong" or "weak" depends upon the field:

Correlation Coefficient		Dancey & Reidy (Psychology)	Quinnipiac University	Chan YH (Medicine)
			(Politics)	
+1	-1	Perfect	Perfect	Perfect
+0.9	-0.9	Strong	Very Strong	Very Strong
+0.8	-0.8	Strong	Very Strong	Very Strong
+0.7	-0.7	Strong	Very Strong	Moderate
+0.6	-0.6	Moderate	Strong	Moderate
+0.5	-0.5	Moderate	Strong	Fair
+0.4	-0.4	Moderate	Strong	Fair
+0.3	-0.3	Weak	Moderate	Fair
+0.2	-0.2	Weak	Weak	Poor
+0.1	-0.1	Weak	Negligible	Poor
0	0	Zero	None	None

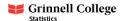
Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107969/

Correlation and Z-Scores

You might notice the *Z*-score transformation being used in Pearson's correlation (ie: $z_i = \frac{x_i - \overline{x}}{s_v}$:

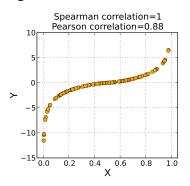
$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$
$$= \frac{1}{n-1} \sum_{i=1}^{n} \left(z_{x_i} \right) \left(z_{y_i} \right)$$

- ▶ Each Z-score reflecst the standardized difference between an observed value, x_i , and the mean of the corresponding variable, \overline{x} .
- ▶ Pearson's use of the *Z*-score transformation allows the correlation coefficient to be standardized and unitless.



Nonlinear Relationships

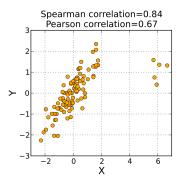
Spearman's rank correlation is an alternative that is suitable for quantifying the strength of non-linear associations:



The values of X and Y are separately ranked from 1 to n and these ranks are used as variables in the correlation calculation.

Spearman's Rank Correlation

Spearman's rank correlation is also more robust to outliers:



However, a downside of Spearman's correlation (and Pearson's correlation too) is that it only captures *monotonic* associations

Common Misconceptions

From Cook & Swayne's Interactive and Dynamic Graphics for Data Analysis:

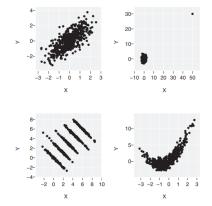
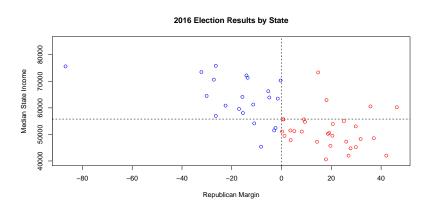


Fig. 6.1. Studying dependence between X and Y. All four pairs of variables have correlation approximately equal to 0.7, but they all have very different patterns. Only the top left plot shows two variables matching a dependence modeled by correlation.

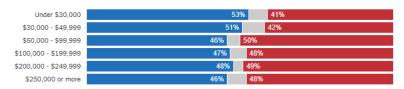
Common Misconceptions



ightharpoonup r = -.63, so do republicans earn lower incomes than democrats?

The Ecological Fallacy

Using 2016 exit polls, conducted by the NY Times (Link), we can get a sense of how party vote and income are related *for individuals*:



- ► Looking at individuals as cases there is an opposite relationship between political party and income
- ► This "reversal" is an example of the ecological fallacy
 - Inferences about individuals cannot necessarily be deduced from inferences about the groups they belong to

Conclusion

- ► Pearson's correlation coefficient is a common way to measure the strength of linear association
 - ► Correlation is the *average product of z-scores*
- You may opt for Spearman's rank correlation if your data contain outliers or non-linear (but monotonic) relationships
- Be careful when interpreting ecological correlations, you need to carefully consider how a case is defined in your data, particularly when aggregation is involved
- ► Today's lab will cover hypothesis tests involving correlation

