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Introduction

So far, we’ve relied upon simulations to determine the null
distribution and p-value for our hypothesis tests.

You might have noticed that these simulations often produce a
bell-shaped distribution.
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Normal Distributions

This shape is no coincidence, but rather a consequence of Central
Limit theorem (CLT). But before we discuss CLT, we’ll need to
cover a few details about the Normal distribution:

f (x)= 1p
2πσ2

e−
(x−µ)2

2σ2

Ï µ is the center (mean) of the distribution
Ï σ is the standard deviation of the distribution
Ï We use the shorthand N(µ,σ) to express a Normal distribution

Ï For example, N(3,1) is a curve centered at 3 with a standard
deviation of 1

Ï You don’t need to know the formula for the Normal curve, but
you should know that it depends on µ and σ
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Normal Distributions

Below are three different Normal Distributions displayed on the
same x-axis:
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Probability and Normal Distribution

The Normal curve is a probability distribution, meaning the area
under the curve can be used to model/calculate the probabilities of
certain events:
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Z-Scores

Because it is inconvenient to work with a distribution that uses a
different scale in each new analysis statisticians frequently use a
standardization approach known as the Z-score transformation:

Zi = Xi −Expected Value
Standard Deviation

Ï For example, an ICU patient in the data from our previous lab
had a systolic blood pressure of 162.

Ï The mean systolic blood pressure of the entire sample was
132.28, and the sample standard deviation was 32.95

Ï So, this individual’s Z-score is Z = 162−132.28
32.95 = 0.90

Ï Meaning they are almost 1 standard deviation above the sample
average
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Z-Scores and Probability

Z-score transformations allow us to use the N(0,1) curve as a
probability model for any scenario, regardless of the measurement
units:
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Central Limit Theorem

Mathematically, Central Limit theorem (CLT) states:

lim
n→∞

p
n
(x −µ

σ

)
→N(0,1)

In more practical terms (using slightly informal notation), CLT
suggests any random variable that is an average of sufficiently many
independent observations will follow a Normal distribution with a
predictable mean and standard deviation:

X ∼N
(
µ, σp

n
)
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Central Limit Theorem

In hypothesis testing, we can make this even more general:

Sample Estimate∼N
(
Expected value under H0,SE )

=⇒ Sample Estimate−Expected value under H0
SE ∼N(0,1)

Here SE is the standard error of the sample estimate. We won’t
get into how these are derived, but CLT gives us the following SE
formulas:

Ï SE =
√

p·(1−p)
n for a single proportion

Ï SE = σp
n for a single mean (note that σ is the standard

deviation of cases in the population)
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The Z-test

Central Limit theorem allows for a standardized hypothesis testing
approach whenever we are studying a sample average or a sample
proportion (which is just an average of 0’s and 1’s)

1. Apply the Z-score transformation to the observed sample mean
or proportion using the null hypothesis and SE derived from
CLT

2. Compare the resulting Z-score to a N(0,1) distribution to find
the p-value by looking at the area corresponding to Z-scores at
least as extreme as the one from the sample data
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Z-test Example

In our infant toy choice example, H0 : p = 0.5 and we observed
p̂ = 14/16= 0.875, or 14 of 16 infants choosing the “helper”. Carry
out a one-sample Z-test by performing the following steps:

1) Identify the expected value and SE for the Z-transformation
2) Calculate the test statistic (Z-value)
3) Use the “Normal” menu of StatKey (under Theoretical

Distributions) to calculate the one-sided p-value
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Z-test Example (solution)

1) Under H0, CLT implies SE =
√

p(1−p)
n =

√
0.5(1−0.5)

16 = 0.125
2) Then, Z = p̂−p

SE = 0.875−0.5
0.125 = 3

3) Using a N(0,1) distribution, Pr(Z ≥ 3)= 0.0013, which is the
one-sided p-value. The two-sided p-value would be 0.0026 due
to the symmetry of the Normal distribution
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Problems with the Z-test

Consider H0 :µ= 0, if we sample data from a N(0,1) (reflecting H0
being true) here is the percentage of time the Z -test produces a
p-value less than 0.05. Is this is a problem?
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Problems with the Z-test (cont.)

Ï Yes! For one-sample quantitative data, the Z -test
systematically underestimates the actual p-value for small
sample sizes

Ï When H0 is true, we’d expect to see a p-value less than 0.05
only 5% of the time

Ï The Z -test produces such p-values far more often than it should
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The T-test

For one-sample quantitative data, we should use a similar procedure
known as the T -test:
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The T-test

Ï For one-sample categorical data, CLT gives us a standard error
formula that only depends upon the hypothesized value, p

Ï For one-sample quantitative data, the SE formula includes σ
(the standard deviation describing all cases in the population),
which is typically unknown

Ï So, to make the Z -test work, we need to estimate σ using the
standard deviation of the sample, s.

Ï However, this step introduces extra variability into our Z -score
calculation which isn’t properly accounted for by the Normal
distribution
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The T-test (cont.)

The t-distribution modifies the Normal curve to account for this
extra uncertainty using a parameter known as degrees of freedom, or
df :
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The T-test (cont.)

As the sample size increases, so do the degrees of freedom, and the
t-distribution approaches the Normal distribution:

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

t−distribution with 8 degrees of freedom

 

 

t (df = 8)
Standard Normal

−4 −2 0 2 4
0.

0
0.

1
0.

2
0.

3
0.

4

t−distribution with 29 degrees of freedom

 

 

t (df = 29)
Standard Normal

18 / 21



Some History on the T-test

Ï The T-test was first developed by William Gosset, a statistician
working for Guinness Brewing

Ï Gosset’s work involved studying small samples to improve
quality control, which exposed him to the unexpected behavior
of the Z-test in certain circumstances

Ï Gosset took a leave of absence from Guinness to study under
the well-known statistician Karl Pearson

Ï In science it is common for the creator of a method to name it
after themselves

Ï Guinness forced Gosset to publish his work under a pseudonym,
so Gosset named the distribution he developed “Student’s
t-distribution”

Ï The T -test is now one of the most widely used statistical
procedures
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T-test Example

In Question #5 of Lab 3, you tested the hypothesis H0 :µ= 120
using the average systolic blood pressure of a sample of n = 200 ICU
patients. The sample mean and standard deviation were 132.28 and
32.95 respectively.

1) Identify the expected value and SE used in the test statistic
2) Calculate the test statistic (T-value)
3) Use the “t” menu of StatKey (under Theoretical Distributions)

to calculate the one-sided p-value
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Guidelines and Conclusion

Ï The Z -test generally works fine for one-sample categorical data
so long as the sample is large enough

Ï At least 10 instances of each outcome, or n ·p ≥ 10 and
n · (1−p)≥ 10

Ï The Z -test should not be used for one-sample quantitative
data, and we should use the T -test instead

Ï The T -test is designed to work for small samples from a
Normally distributed population

Ï It is also appropriate for large samples (n ≥ 30), regardless of
how the data are distributed

Ï Going forward, we will prioritize these tests over StatKey
simulations, and our next lab will cover how to perform them
in R
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