Two-Sample Hypothesis Tests

Ryan Miller

Introduction

Recall that statisticians use hypothesis testing to make inferences about a *population*:

In our toy choice example, we saw that a majority of the sample favored the "helper", but we really wanted to know if this finding could be generalized to a broader population

One-Sample vs. Two-Sample Testing

One-sample tests hypothesize something about the entire population:

$$H_0: p = 0.5$$

or
$$H_0$$
: $\mu = 120$

The entire sample is then used to as evidence against the null hypothesis via the p-value:

$$Pr(\hat{p} \ge 14/16 | p = 0.5)$$

or
$$Pr(\bar{x} \ge 132.7 | \mu = 120)$$

Note: These numbers come from previous examples (infant toy choice, and ICU patient blood pressures)

One-Sample vs. Two-Sample Testing

Two-sample tests hypothesize something about groups within the population:

$$H_0: p_1 = p_2 \iff p_1 - p_2 = 0$$

or $H_0: \mu_1 = \mu_2 \iff \mu_1 - \mu_2 = 0$

- We do not hypothesize specific values for the population parameters $(p_1, p_2 \text{ or } \mu_1, \mu_2)$
 - We view our available data as two-samples, as cases in group 1 only provide information about p_1 (or μ_1) and cases in group 2 only provide information about p_2 (or μ_2)
- ► The *p*-value is now based how each sample group differs
 - ► For example: $Pr(\overline{x}_1 \overline{x}_2 \ge 10 | \mu_1 = \mu_2)$ if we observed a difference in means of 10-units

Two-Sample Z-test

We will use the **two-sample** *Z***-test** for *two-sample categorical data*, or scenarios where we want to compare proportions observed in two different groups:

- ► Typically, we use $H_0: p_1 = p_2$ and $H_a: p_1 \neq p_2$
- ▶ We won't cover the details, but CLT gives us:

$$SE = \sqrt{\frac{p_0(1-p_0)}{n_1} + \frac{p_0(1-p_0)}{n_2}}$$

- ▶ Because there are many different ways to satisfy H_0 , we will use a *pooled proportion*, p_0 , found by treating all of the data as a single sample (ie: ignoring the observed groups)
- ▶ We then use $Z = \frac{\hat{p}_1 \hat{p}_2}{SE}$ and compare to a N(0,1) distribution to get the p-value (just like we did for the one-sample Z-test)

Two-Sample Z-test Example

Until 2002, hormone replacement therapy (HRT) was commonly prescribed to postmenopausal women. This changed in 2002, when a large clinical trial was stopped early for safety concerns.

In the trial, 8506 women were randomized to take HRT and 8102 were randomized to take a placebo. Researchers observed 164 cases of cardiovascular disease (CVD) in the HRT group, but only 122 CVD cases in the placebo group.

- 1) State the null and alternative hypotheses used to test whether the risk of CVD is higher in women taking HRT
- 2) Find the pooled proportion, and the SE for this application
- 3) Apply the Z-score transform to find the Z-value, then find the p-value and make a conclusion

Two-Sample Z-test Example (solution)

- 1) $H_0: p_1 p_2 = 0$, where p_1 is the proportion of cases of cardiovascular disease in the HRT group, and p_2 is the equivalent proportion for the placebo group.
- 2) $\hat{p}_0 = \frac{164 + 122}{8506 + 8102} = 0.017$, so $SE = \sqrt{\frac{0.017(1 0.017)}{8506} + \frac{0.017(1 0.017)}{8102}} = 0.002$
- 3) $Z = \frac{(164/8506 122/8102) 0}{0.002} = 2.11$, the corresponding *p*-value (two-sided) is 0.034, which is strong evidence of a higher rate of cardiovascular disease in the HRT group

Two-Sample *T*-test

- ► The **two-sample** *T***-test** is used for *two-sample quantitative* data
- ► Typically, we use $H_0: \mu_1 = \mu_2$ and $H_a: \mu_1 \neq \mu_2$
- ► CLT gives us $SE = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
- ► From here we apply the Z-score transformation to calculate a T-value, which is used to find the p-value
 - Degrees of freedom are complicated because n_1 and n_2 typically aren't equal, we'll rely upon R to find them

Two-Sample *T*-test Example

In the 2008 Olympics an unprecedented number of swimming world records were set by athletes using Speedo's LZR Racer, a uniquely engineered full-body swimsuit. But does the suit really impact a swimmer's speed?

- Without the suit, 12 swimmers had an average velocity of $\overline{x}_1 = 1.507$ m/s, with a standard deviation of s = 0.136 m/s
- With the suit, 12 swimmers had an average velocity of $\overline{x}_2 = 1.429$ m/s, with a standard deviation of s = 0.141 m/s

Calculate the SE and T-value, then compare to a t-distribution with df = 11 to find the two-sided p-value

Paired Samples

- ▶ In the wetsuit example, it was actually the same 12 swimmers that swam with and without the suit
 - ► Thus, we didn't actually have two independent samples, but rather one sample that we measured in two different ways
- This is known as a paired design, and it comes with the advantage of controlling for the variability between swimmers
 - ► The paired T-test uses the average difference observed within swimmers and H_0 : $\mu_{diff} = 0$ in a one-sample T-test

Paired *T*-test Example

```
## Load Data
swim_data = read.csv("https://remiller1450.github.io/data/Wetsuits.csv")
## Find the paired differences and give them to t.test()
paired_difference = swim_data$Wetsuit - swim_data$NoWetsuit
t.test(x = paired difference, mu = 0)
##
   One Sample t-test
##
## data: paired difference
## t = 12.318, df = 11, p-value = 8.885e-08
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.06365244 0.09134756
## sample estimates:
## mean of x
   0.0775
##
```


Sample Size Considerations

Just like the one-sample Z and T tests, the tests we saw today are based upon probability models that will only accurately approximate the null distribution under certain conditions:

- ► The two-sample *Z*-test is appropriate when at least 10 of each outcome are expected in both groups
 - $n_1 p_0 \ge 10$, $n_1(1-p_0) \ge 10$, $n_2 p_0 \ge 10$, and $n_2(1-p_0) \ge 10$
- ► The two-sample *T*-test is appropriate in either of the following situations:
 - Both groups came from Normally distributed populations
 - ▶ $n_1 \ge 30$ and $n_2 \ge 30$, regardless of how the data are distributed

Note that these are common rules of thumb, there aren't any definitive cutoffs for when a procedure does/doesn't work

Conclusion

We've now covered Z and T tests for both one-sample and two-sample data. You should know how the following:

- ► Categorical data: Z-test
 - ► One-sample data: $H_0: p =$ ___ and $SE = \sqrt{\frac{p(1-p)}{n}}$
 - ► Two-sample data: $H_0: p_1 = p_2$ and $SE = \sqrt{\frac{p_0(1-p_0)}{n_1} + \frac{p_0(1-p_0)}{n_2}}$ with p_0 being the pooled proportion
- Quantitative data: T-test
 - ► One-sample data: $H_0: \mu = \underline{\hspace{1cm}}$ and $SE = \frac{\sigma}{\sqrt{n}}$ and df = n 1
 - ► Two-sample data: $H_0: \mu_1 = \mu_2$ and $SE = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$ with df found using R
 - Paired data: just a one-sample test on the paired differences

