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Introduction

Previously, we learned how to use one-way ANOVA to evaluate the
global hypothesis:

Ho:,Lt1=/,t2=...=uk

The ANOVA F-test measures the evidence the sample data provide
against this hypothesis by comparing the sum of squared residuals
for the null model (involving a single mean) and an alternative
model (involve group-specific means)
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Introduction (cont.)

One-way ANOVA provides an answer to whether some groups have
different means than other groups, but it does not tell us which
groups are different. For this, we'd need to test numerous pairwise
hypotheses:

1. Ho:pa=po2
2. Ho:pa=p3
3. Ho:po2=p3
4. ...

However, there are problems with performing a large number of
hypothesis tests. . .
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NFL Example

> Suppose we generate n=17 point differentials for 32 NFL

teams such that the true mean is exactly zero
> Considering Hp : u =0 for every team, we have 32 samples of
size n=17 where the null hypothesis is true

Simulated Games where mu=0

Point Differentials
° . N
-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Team
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NFL Example (cont.)

Below is the same simulated data, but sorted by median differential.

Sorted by Median Point Differential

o e

Point Differentials
° - ~
H }_* -

-3
3 29 4 6 12 18 30 5 27 24 16 26 14 11 22 23 32 15 19 1 25 28 13 10 8 21 31 9 2 7 20 17
Team

Question: If a T-test of Hy: =0 is performed on each team, how
many of these tests will have p-values less than 0.057
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NFL Example (cont.)

Two of the simulated teams, #20 (p=0.002) and #17 (p=0.017),
seemingly provide strong evidence against Hp: u=0:

L1 TR W | L1 Lo Lo L I 11
0.00 025 050 075 1.00
p-values

However, the distribution of p-values across all of these simulated
teams is uniform. ..
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Testing Errors

In reality, any conclusion drawn from a hypothesis test may or may
not be correct:

The Truth
|

Ho True H0 False

Heject Ho
My
Decision .
Reject H,

> A type | error occurs when the null hypothesis is rejected, but
in reality it is true

> A type Il error occurs when the null hypothesis cannot be
rejected, but in reality it is false
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Testing Errors and Significant Thresholds

> A major reason why p-values tend to be compared to a
significance threshold of a =0.05 is that this procedure will
control the rate of type I errors to be no more than 5% in
circumstances where Hy is true

> In our NFL simulation, we had 32 samples where Hgy was true,

and we observed 2/32 produced p-values less than 0.05 (type |
errors)

> This isn't surprising, because we expect one type | error for
every 20 hypothesis tests performed using a = 0.05
» What could we (as statisticians) do to make fewer type | errors?

> What consequence would this have on the prevelance of type Il
errors?
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Practice

Jury trials in the US use the premise “innocent until proven guilty”.

Relating this to hypothesis testing, we can view a trial as a test of
Hp : Person A is innocent vs. H,: Person A is guilty

1) In words, what would a Type | and Type Il error each represent
in this scenario?

2) Which error would be worse? How might you choose a to be
mindful of the trade-off between Type | and Type Il errors?
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Practice (solution)

1) A Type | error is convicting an innocent person. A Type Il error
is letting a guilty person go free.

2) A Type | error should be viewed as worse, so we might set a
very strict decision threshold (ie: @ =0.01 or even a =0.001).
This is what courts actually do, as the standard of “beyond a

reasonable doubt” is generally considered to be a very high bar.
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Family-wise Error Rates

> The scientific principle of replication helps prevent the
pervasiveness of type | errors in controlled experiments
> An experiment might have a 5% chance of producing a false
positive result (type | error), but the chances of three
replications of the experiment each independently producing a
type | error is 0.053 = 0.000125, or roughly 1 in 10,000
» Things are more problematic for studies that aren't replicable,
particularly when they involve a family of related tests, such in
our NFL example

> In this example, we had 32 opportunities to make a type | error,

so the chances of at least one false positive result were high
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Controlling the Family-wise Error Rate

We can calculate the probability of at least one type I error in 32
independent hypothesis tests where Hp is true and a =0.05:

Pr(At least one type | error) =1— Pr(No type | errors)
=1-(1-0.05)%*=80.63%
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Controlling the Family-wise Error Rate

We can calculate the probability of at least one type I error in 32
independent hypothesis tests where Hp is true and a =0.05:

Pr(At least one type | error) =1— Pr(No type | errors)
=1-(1-0.05)%*=80.63%

This suggests a simple correction to significance threshold:
a* =a/h, where h is the number of hypothesis tests being
performed:

Pr(At least one type | error) =1 — Pr(No type | errors)
=1-(1-0.05/32)* = 5%
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The Bonferroni Adjustment

Setting a* = a/h is known as the Bonferroni Adjustment. If we
apply this to our NFL example, we should compare p-values to the
adjusted threshold of a* =0.05/32=0.0016 to ensure there is at
most of 5% chance of making any type | errors across the entire

family of tests:

p-value

signif using 0.057

signif using 0.00167

0.00213
0.01691
0.05659
0.11768
0.13089

0.14055

yes
yes
no
no
no

no

no
no
no
no
no

no
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Adjusted p-values

» Some applications, such as genetics, frequently use thousands

of hypothesis tests

> Because very small numbers are difficult, you'll commonly see

adjusted p-values in these studies

> Bonferroni adjusted p-values multiply the original p-value by h
(the number of tests) and are compared directly with the target
family-wise Type | error rate (ie: a =0.05)

p-value adjusted p-value significant?
0.00213 0.06829 no
0.01691 0.54101 no
0.05659 1.00000 no
0.11768 1.00000 no
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Practice

A genetic association study tested for differences in gene expression
between two types of leukemia. The study tested 7129 genes.

1) If all 7129 tests were done using a =0.01, and there are no
genetic differences between these two types of leukemia, how
many “statistically significant” genes would be expected?

2) Suppose 783 genes had p-values less than 0.01, do you believe
there is an association between some genes and the type of
leukemia?

3) Suppose you wanted to use the Bonferroni adjustment to
ensure a Type | error rate no larger than 5%. What would your
adjusted significance threshold be?

4) Suppose the “most significant” gene had a p-value of 0.000001,
what is its Bonferroni Adjusted p-value?

22 Grinnell College
Statistics

15/20



Practice (solution)

1) You'd expect 7129 %0.01 =71 Type | errors

2) Yes, there were over 10 times (712) more significant results
than expected

3) a*=0.05/7129 =0.000007

4) The adjusted p-value is 0.000001 * 7129, or p* =0.007
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False Discovery Rates

A genomics study measured the expression levels of 17,322 genes to
identify genes that are co-expressed with BRCAL, a gene that is
well-known to be associated with breast cancer. For each gene a
hypothesis test was performed, and the p-values of these tests are
displayed using a histogram:

150

100

Genes

50

0.00 025 050 075 1.00
Observed p-value

22 Grinnell College

Statistics
17/20



False Discovery Rates

> Suppose we apply the Bonferroni adjustment to control the
family-wise type | error rate at 10%
> a*=0.1/3226 =0.00003
> The study yields 2 statistically significant genes (with p-values
less than 0.00003)
> Suppose we seek to control the false discovery rate at 10%
» This isn't as easy to do “by hand”, but the procedure in R
identifies 24 genes
> Among these 24 genes we'd expect 2 or 3 to be false positives
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Post-hoc Testing and ANOVA

» In our previous lab on ANOVA, we used the TukeyHSD ()

function to perform pairwise tests
> This approach applies a method family-wise type | error control
(similar to Bonferroni) but is slightly more powerful due to its
exclusive focus on differences in means
> In the R output below you should notice adjusted p-values are
reported

## diff lwr upr p adj
## ATL-ARI 17.1666667 -15.57986 49.91320 0.9806062
## BAL-ARI 16.9166667 -21.07713 54.91046 0.9984036
## BUF-ARI 13.1666667 -18.62122 44.95455 0.9995627
## CAR-ARI 0.9666667 -34.67467 36.60800 1.0000000
## CHI-ARI 16.4523810 -16.29415 49.19891 0.9892498
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Conclusion

Below are the main ideas you should understand:

1.

Statistical tests do not provide definitive conclusions, your
decision might be a type | or type Il error

The chances of making at least one type | error increase
dramatically as you perform more hypothesis tests within a
single study, but this can be corrected for using family-wise
error rate methods or false discovery rate methods.

False discovery rate methods are less strict as they allow a
certain percentage of findings to be false discoveries, but this
has the benefit of reducing the type Il error rate

The pairwise p-values from post-hoc testing functions like

TukeyHSD() are adjusted to control the family-wise error rate.

We could use p.adjust () to control the false discovery rate
instead.
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