Testing Errors and Multiple Comparisons

Ryan Miller

Introduction

Previously, we learned how to use *one-way ANOVA* to evaluate the *global hypothesis*:

$$H_0: \mu_1 = \mu_2 = \ldots = \mu_k$$

The ANOVA *F*-test measures the evidence the sample data provide against this hypothesis by comparing the *sum of squared residuals* for the null model (involving a single mean) and an alternative model (involve group-specific means)

Introduction (cont.)

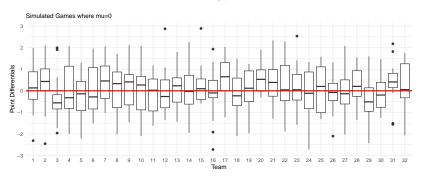
One-way ANOVA provides an answer to whether some groups have different means than other groups, but it *does not* tell us *which groups* are different. For this, we'd need to test numerous *pairwise hypotheses*:

- 1. $H_0: \mu_1 = \mu_2$
- 2. $H_0: \mu_1 = \mu_3$
- 3. $H_0: \mu_2 = \mu_3$
- 4. ...

However, there are problems with performing a large number of hypothesis tests...

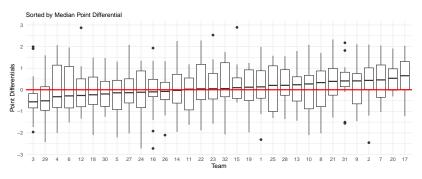
NFL Example

- ► Suppose we generate *n* = 17 point differentials for 32 NFL teams such that the *true mean is exactly zero*
 - Considering $H_0: \mu = 0$ for every team, we have 32 samples of size n = 17 where the null hypothesis is true



NFL Example (cont.)

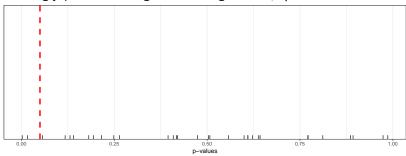
Below is the same simulated data, but sorted by median differential.



Question: If a T-test of $H_0: \mu = 0$ is performed on each team, how many of these tests will have p-values less than 0.05?

NFL Example (cont.)

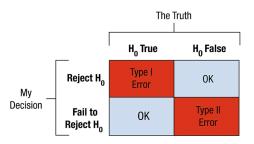
Two of the simulated teams, #20 (p=0.002) and #17 (p=0.017), seemingly provide strong evidence against H_0 : $\mu = 0$:



However, the distribution of p-values across all of these simulated teams is uniform...

Testing Errors

In reality, any conclusion drawn from a hypothesis test may or may not be correct:



- ▶ A type I error occurs when the null hypothesis is rejected, but in reality it is true
- ▶ A **type II error** occurs when the null hypothesis *cannot be* rejected, but in reality it is *false*

Testing Errors and Significant Thresholds

- A major reason why *p*-values tend to be compared to a significance threshold of $\alpha = 0.05$ is that this procedure will control the rate of type I errors to be no more than 5% in circumstances where H_0 is true
 - In our NFL simulation, we had 32 samples where H_0 was true, and we observed 2/32 produced p-values less than 0.05 (type I errors)
 - This isn't surprising, because we expect one type I error for every 20 hypothesis tests performed using $\alpha = 0.05$
- What could we (as statisticians) do to make fewer type I errors?
 - What consequence would this have on the prevelance of type II errors?

Practice

Jury trials in the US use the premise "innocent until proven guilty". Relating this to hypothesis testing, we can view a trial as a test of H_0 : Person A is innocent vs. H_a : Person A is guilty

- 1) In words, what would a Type I and Type II error each represent in this scenario?
- 2) Which error would be worse? How might you choose α to be mindful of the trade-off between Type I and Type II errors?

Practice (solution)

- 1) A Type I error is convicting an innocent person. A Type II error is letting a guilty person go free.
- 2) A Type I error should be viewed as worse, so we might set a very strict decision threshold (ie: $\alpha = 0.01$ or even $\alpha = 0.001$). This is what courts actually do, as the standard of "beyond a reasonable doubt" is generally considered to be a very high bar.

Family-wise Error Rates

- ► The scientific principle of replication helps prevent the pervasiveness of type I errors in controlled experiments
 - ▶ An experiment might have a 5% chance of producing a false positive result (type I error), but the chances of three replications of the experiment each independently producing a type I error is 0.05³ = 0.000125, or roughly 1 in 10,000
- Things are more problematic for studies that aren't replicable, particularly when they involve a family of related tests, such in our NFL example
 - ► In this example, we had 32 opportunities to make a type I error, so the chances of at least one false positive result were high

Controlling the Family-wise Error Rate

We can calculate the probability of at least one type I error in 32 independent hypothesis tests where H_0 is true and $\alpha = 0.05$:

$$Pr(At least one type I error) = 1 - Pr(No type I errors)$$

= 1 - (1 - 0.05)³² = 80.63%

Controlling the Family-wise Error Rate

We can calculate the probability of at least one type I error in 32 independent hypothesis tests where H_0 is true and $\alpha = 0.05$:

$$Pr(At least one type I error) = 1 - Pr(No type I errors)$$

= 1 - (1 - 0.05)³² = 80.63%

This suggests a simple correction to significance threshold: $\alpha^* = \alpha/h$, where h is the number of hypothesis tests being performed:

$$Pr(At least one type I error) = 1 - Pr(No type I errors)$$

= 1 - (1 - 0.05/32)³² \approx 5%

The Bonferroni Adjustment

Setting $\alpha^* = \alpha/h$ is known as the **Bonferroni Adjustment**. If we apply this to our NFL example, we should compare *p*-values to the adjusted threshold of $\alpha^* = 0.05/32 = 0.0016$ to ensure there is at most of 5% chance of *making any type I errors* across the entire family of tests:

p-value	signif using 0.05?	signif using 0.0016?
0.00213	yes	no
0.01691	yes	no
0.05659	no	no
0.11768	no	no
0.13089	no	no
0.14055	no	no

Adjusted *p*-values

- Some applications, such as genetics, frequently use thousands of hypothesis tests
 - Because very small numbers are difficult, you'll commonly see adjusted p-values in these studies
 - Bonferroni adjusted p-values multiply the original p-value by h (the number of tests) and are compared directly with the target family-wise Type I error rate (ie: $\alpha = 0.05$)

p-value	adjusted p-value	significant?
0.00213	0.06829	no
0.01691	0.54101	no
0.05659	1.00000	no
0.11768	1.00000	no

Practice

A genetic association study tested for differences in gene expression between two types of leukemia. The study tested 7129 genes.

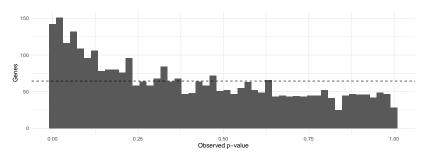
- 1) If all 7129 tests were done using $\alpha = 0.01$, and there are no genetic differences between these two types of leukemia, how many "statistically significant" genes would be expected?
- 2) Suppose 783 genes had *p*-values less than 0.01, do you believe there is an association between some genes and the type of leukemia?
- 3) Suppose you wanted to use the Bonferroni adjustment to ensure a Type I error rate no larger than 5%. What would your adjusted significance threshold be?
- 4) Suppose the "most significant" gene had a *p*-value of 0.000001, what is its *Bonferroni Adjusted p-value*?

Practice (solution)

- 1) You'd expect 7129 * 0.01 = 71 Type I errors
- 2) Yes, there were over 10 times (712) more significant results than expected
- 3) $\alpha^* = 0.05/7129 = 0.000007$
- 4) The adjusted *p*-value is 0.000001 * 7129, or $p^* = 0.007$

False Discovery Rates

A genomics study measured the expression levels of 17,322 genes to identify genes that are co-expressed with BRCA1, a gene that is well-known to be associated with breast cancer. For each gene a hypothesis test was performed, and the p-values of these tests are displayed using a histogram:



False Discovery Rates

- ► Suppose we apply the Bonferroni adjustment to control the family-wise type I error rate at 10%
 - $\alpha^* = 0.1/3226 = 0.00003$
 - ► The study yields 2 statistically significant genes (with *p*-values less than 0.00003)
- Suppose we seek to control the false discovery rate at 10%
 - ► This isn't as easy to do "by hand", but the procedure in R identifies 24 genes
 - ► Among these 24 genes we'd expect 2 or 3 to be false positives

Post-hoc Testing and ANOVA

- ► In our previous lab on ANOVA, we used the TukeyHSD() function to perform pairwise tests
 - ► This approach applies a method family-wise type I error control (similar to Bonferroni) but is slightly more powerful due to its exclusive focus on differences in means
 - ▶ In the R output below you should notice adjusted *p*-values are reported

```
## ATL-ARI 17.1666667 -15.57986 49.91320 0.9806062

## BAL-ARI 16.9166667 -21.07713 54.91046 0.9984036

## BUF-ARI 13.1666667 -18.62122 44.95455 0.9995627

## CAR-ARI 0.9666667 -34.67467 36.60800 1.0000000

## CHI-ARI 16.4523810 -16.29415 49.19891 0.9892498
```


Conclusion

Below are the main ideas you should understand:

- Statistical tests do not provide definitive conclusions, your decision might be a type I or type II error
- The chances of making at least one type I error increase dramatically as you perform more hypothesis tests within a single study, but this can be corrected for using family-wise error rate methods or false discovery rate methods.
- False discovery rate methods are *less strict* as they allow a certain percentage of findings to be false discoveries, but this has the benefit of reducing the type II error rate
- 4. The pairwise p-values from post-hoc testing functions like TukeyHSD() are adjusted to control the family-wise error rate. We could use p.adjust() to control the false discovery rate instead.

