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Polio Epidemic - Introduction

I In the early 1950s the US experienced an outbreak of polio that
reached 58,000 new cases in 1952

I Several vaccines had been developed, with one created by
Jonas Salk seeming particularly promising. How might the
effectiveness of Salk’s vaccine be established?

I In 1954, the US Public Health Service organized a large study
involving nearly 1 million children in grades 1, 2, and 3, the
most vulnerable age groups for polio
I Do you have any concerns with performing a randomized

experiment in this setting?
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Polio Epidemic - Ethics

I Parents must provide consent for their children to receive the
vaccination
I But is it ethical to deliberately leave some of these consenting

children unvaccinated?

I A more ethical design might be to offer the vaccine to all
consenting children and use those whose parents refused the
vaccine as the control group

I Do you have any problems with the aforementioned ethical
design?
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Polio Epidemic - Confounding

I Higher-income parents tended to be more likely to consent, and
their children tended to be more likely to contract polio
I This is thought to be because children from poorer backgrounds

are more likely to come into contact with mild cases of polio
during early childhood when they are protected by antibodies
from their mothers

I Thus, family background would be a major source of
confounding in the ethical design
I Any observed differences could be due to this factor and not the

efficacy of the vaccine
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Polio Epidemic - Randomization and Blinding

I To avoid confounding, the treatment and control groups
needed to be randomly selected from the same population:
children whose parents consented to treatment

I This meant that some children whose parents consented would
be randomly chosen to not receive the vaccine

I Additionally, the Salk vaccine trial included a placebo and was
double-blinded
I Children in the control group received an injection of a saline

solution
I Neither the child, their parents, nor their doctors knew who had

received vaccine and who had received placebo
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Polio Epidemic - Salk Vaccine Trial Results

The incidence of polio was lower in the treatment group. But to
attribute this decrease to the vaccine all other explanations must be
ruled out. . .

Group n Polio Cases Rate per 100,000
Treatment 200000 56 28
Control 200000 142 71
Refused Consent 350000 161 46

I Confounding? No, proper randomization was used
I Sampling bias? No, both groups were randomly chosen from

the same population
I Diagnostic bias? No, the doctors and participants were blinded
I Random chance? . . .
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Statistical Testing

I In the Salk Vaccine Trial, the incidence of polio was reduced by
a factor of roughly 2.5 (71/28)
I But this is only what happened in the sample, we really want to

generalize these findings to a broader population
I It is unlikely that the broader population will see a reduction of

exactly 2.5, so how can we determine whether the results seen
in this sample are convincing evidence that the population will
benefit from the vaccine?

I We might be able to use confidence intervals, but instead we’ll
ask the more direct question:

Had the vaccine made no difference, how likely would be for
the vaccinated group to have a 2.5 times lower incidence
rate?
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Statistical Testing

I This hypothetical scenario: “What if the vaccine made no
difference” describes a null hypothesis
I Statistically speaking, it implies that both population

parameters (the polio incidence rates for vaccinated and
unvaccinated children) are identical, and any differences we
observed in the sample are due to random chance.

I In statistical notation:

Null Hypothesis (H0) : µtrt = µctrl or µtrt−µctrl = 0 or µtrt
µctrl

= 1

I The goal of statistical testing is to use the data observed in a
sample to evaluate whether a null hypothesis is plausible
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p-values

Statistical tests focus finding: The probability of seeing results at
least as extreme as those observed in our sample if the null
hypothesis were true

I This probability is called the p-value
I The smaller the p-value, the stronger the evidence is against

the null hypothesis
I A p-value of 0.01 indicates that if the null hypothesis were true,

only 1/100 samples would be expected to produce an outcome
as or more extreme as the one we observed in our sample

9 / 31



The Null Distribution

I The way we calculate p-values is similar to the logic underlying
confidence intervals

I Interval estimation was based around finding plausible values of
a statistic that could occur when repeatedly sampling

I Statistical testing seeks to find plausible values of a statistic
that could occur when repeatedly sampling if the null
hypothesis were true

I Thus, the sampling distribution in the hypothetical world where
the null hypothesis is true is called the null distribution

I The null distribution is centered at the value specified in the
null hypothesis, and it displays the distribution of possible
sample estimates we would expect to see if the null hypothesis
were true
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The Null Distribution

In the polio example, here is the null distribution for the factor by
which polio was reduced.

Null Distribution (1000 simulations)
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The actual experiment showed a reduction of ~2.5, what do you
think the p-value is?
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Null and Alternative Hypotheses

Generally, we will pair a null hypothesis with an alternative
hypothesis that we’d like to establish:

Null Hypothesis (H0) : µtrt = µctrl

Alternative Hypothesis (Ha) : µtrt < µctrl

I The alternative hypothesis offers a sensible conclusion if our
data suggests the null hypothesis is unlikely
I It also helps us formalize the meaning of “at least as extreme”

in our definition of the p-value

I We’ll first look at one-sided hypothesis tests because they are
easy to understand, but most real analyses will use two-sided
tests
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Hypothesis Testing - Example

The TV show Mythbusters uses experiments to evaluate popular
beliefs that might not be true. One myth the show investigates is
whether yawning is contagious.

I 50 people were recruited with the premise that they were
looking for people to appear on the show

I The recruiter met with each person in a small room and either
intentionally yawned or did not yawn during the interview

I After the recruiter left, each subject was alone in the room for
a period of time while being recorded on video

I Whether or not each subject yawned at any point during or
after the interview was recorded
I When the recruiter didn’t yawn, 4 of 16 subjects also yawned
I When the recruiter yawned, 10 of 34 subjects also yawned
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Hypothesis Testing - Example
With your group:

1. Using the information given regarding this experiment, come up
with suitable null and alternative hypotheses

2. Report your estimate of the statistic your test will use
3. Estimate the p-value using the null distribution below

Null Distribution
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Hypothesis Testing - Example (Solution)

1. H0 : py |yawn = py |no yawn and HA : py |yawn > py |no yawn
2. The observed difference in proportions is

p̂y |yawn − p̂y |no yawn = 0.044
3. A really large portion of the histogram is more extreme in favor

of the alternative than our estimate of 0.044, so the p-value is
likely around 0.4

We conclude that this experiment does not provide any conclusive
evidence that yawning is contagious
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Hypothesis Testing - The Alternative Hypothesis

I Suppose we setup an alternative hypothesis stating that the
interviewer yawning would make a participant less likely to
yawn, or HA : py |yawn < py |no yawn

I How would the p-value change? (Hint: think about what an
“extreme”, or unexpected, result looks like here)

Null Distribution
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Hypothesis Testing - The Alternative Hypothesis

I When the alternative hypothesis is specified in the wrong
direction (relative to effect seen in the data) a large fraction of
the null distribution is “at least as extreme” as the observed
estimate

I In this example, where HA : py |yawn < py |no yawn, the one-sided
p-value would be around 0.6
I Notice this is the compliment of the one-sided p-value for the

alternative hypothesis HA : py |yawn > py |no yawn
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Statistical Significance

Ronald Fisher, creator of the p-value, and described by his peers as
“a genius who almost single-handedly created the foundations of
modern statistical science”, suggests the following guidelines:

p-value Evidence against the null
0.100 Borderline
0.050 Moderate
0.025 Substantial
0.010 Strong
0.001 Overwhelming

I Generally, modern science uses 0.05 as a threshold for rejecting
the null hypothesis

I Given this threshold, p-values < 0.05 are described as
“statistically significant”
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Statistical Significance

I p < 0.05 is an arbitrary cutoff that shouldn’t distract you from
the main idea behind p-values

I A p-value of 0.0001 doesn’t tell you the same thing as a
p-value of 0.04, even though both are “statistically significant”

I When reporting results you should always include the p-value
itself, not just whether or not it was below the 0.05 threshold
for significance
I Imagine your weather app only telling you: “it’s cold” or “it’s

not cold”
I Because “Cold” is subjective, it’s better to know the

temperature and decide for yourself
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p-value Misconceptions

I p-values have been much maligned over the last several years,
so much so that the largest professional organization of
statisticians, the American Statistical Association (ASA),
recently issued a statement on p-values

I The statement addresses several different p-value
misconceptions, the proliferation of these mistakes has led
some to abandon p-values entirely (They’ve been banned from
the journal: Basic and Applied Psychology)
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p-value Misconceptions

I One common mistake is to conclude that a high p-value means
the null hypothesis is likely to be true

I In reality, a high p-value tells you very little about how likely
the null hypothesis is to be true!

I We’ll illustrate this with a hypothetical example:
I Suppose Steph Curry and I each shoot 5 three-point shots
I I make 2/5 and he makes 5/5
I Under the null hypothesis that we are equally good at

three-point shooting, the probability (p-value) of a result this
extreme is 0.17

I Do these results justify the conclusion that Steph Curry and I
are equally good shooters?
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p-value Misconceptions

While that hypothetical example illustrates the problem, but maybe
you’re thinking that no makes conclusions like that in real life. . .

Unfortunately, it happens all the time:

I In 2006, the Woman’s Health Initiative found that low-fat diets
are associated with reduced breast cancer risk with a p-value of
0.07

I The NY Times ran the headline: “Study Finds Lowfat Diets
Won’t Stop Cancer or Heart Disease”

I The article described the study’s results as: “The death knell
for the belief that reducing the percentage of fat in the diet is
important for health”
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“Proving” the Null Hypothesis

I As a brief aside, the statistical testing framework is not
designed to “prove” a null hypothesis

I The closest you might come to “proving the null hypothesis”
would be finding a confidence interval whose range is very
narrow around the null value
I Such an interval would suggest that only values which are

extremely close to the null hypothesis are plausible
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p-value Misconceptions

I Another common mistake is mistaking a statistically significant
result for a clinically significant result
I Statistical significance simply suggests that the observed

differences are unlikely to be due to random chance
I It doesn’t mean that the observed differences are of any

practical importance
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Statistical vs. Clinical Significance

I In the 1980s pharmaceutical company AstraZeneca developed
an incredibly successful heartburn medication Prilosec

I The FDA patent for Prilosec ran out in 2001, prompting
AstraZeneca to try to replace Prilosec with a new drug Nexium

I The active ingredients of these drugs are:
I Omeprazole (Prilosec)
I Esomeprazole (Nexium)

I Without getting in to the chemistry, Omeprazole is a 50-50 mix
of active and inactive isomers, while Esomeprazole only
contains active “S” isomers

I Thus, taking the same amount of Nexium provides twice the
effective dose of the active isomer

25 / 31



Nexium vs. Prilosec

I With this “modification”, AstraZeneca showed that Nexium
had a healing rate of 90% for erosive esophagitis, while Prilosec
only had a 87% success rate

I Because the sample size of the trial was large (nearly 6,000),
the difference was statistically significant with a p-value well
below 0.05

I This led the FDA to approve Nexium, while AstraZeneca spent
hundreds of millions of dollars marketing the drug to patients
and doctors as a state-of-the-art improvement over Prilosec
under the slogan: “better is better”

I The marketing campaign worked, AstraZeneca has since made
over 47 billion dollars from Nexium
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Nexium vs. Prilosec

I Practically speaking, the success rate of the two drugs was
roughly the same, it was the large sample size that led to a
statistically significant difference

I The 95% confidence interval for the factor by Nexium improved
the healing rate was (1.02, 1.06)

I Furthermore, the small observed difference is almost surely due
to Nexium containing more of the active isomer, not a
groundbreaking development

I This is an example of when statistical hypothesis testing can go
wrong
I Statistical testing doesn’t measure practical importance
I Statistical testing needs to be informed by other sources of

scientific knowledge
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Putting it all together
An important part of this class is translating the results of statistical
test to a meaningful conclusion. Below are several examples ranging
from “Really Really Bad”, “Really Bad”, “Bad”, “Okay”, “Good”,
and “Really Good”. With your group try to classify each statement:

1. p < 0.05 so we reject the null hypothesis
2. p = 0.01, indicating strong evidence that Nexium is more

effective than Prilosec at treating heartburn
3. The study failed to reject the hypothesis that diet isn’t

associated with breast cancer risk
4. The study provided borderline evidence (p = 0.07) that low-fat

diets reduce breast cancer risk, it is possible that diet has no
effect, but it is also possible that low-fat diets have a small
protective effect

5. The study rejected the hypothesis that Nexium and Prilosec are
equally good

6. p > 0.05, so the null hypothesis is likely true
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Putting it all together

1. p < 0.05 so we reject the null hypothesis Really Bad
2. p = 0.01, indicating strong evidence that Nexium is more

effective than Prilosec at treating heartburn Good
3. The study failed to reject the hypothesis that diet isn’t

associated with breast cancer risk Okay
4. The study provided borderline evidence (p = 0.07) that low-fat

diets reduce breast cancer risk, it is possible that diet has no
effect but it is also possible that low-fat diets have a small
protective effect Really Good

5. The study rejected the hypothesis that Nexium and Prilosec are
equally good Bad

6. p > 0.05, so the null hypothesis is probably true Really Really
Bad
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The Next Steps

I So far we’ve seen how to determine the p-value when given the
null distribution

I In theory, the null distribution not only requires repeated
sampling but also for the null hypothesis to be true. . . so how
do we estimate it?

I In our next lab we will learn about randomization approaches
aimed at simulating the null distribution
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Conclusion

Right now you should. . .

1. Understand null hypotheses and how p-values measure the
evidence against the null

2. Understand how randomization allows us to replicate the
study/experiment under the null hypothesis

3. Know how to perform a randomization test using StatKey
4. Be aware of p-value misconceptions

These notes cover Sections 4.1 - 4.3 of the textbook, I encourage
you to read through those sections and their examples
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