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The Central Limit Theorem (one mean)

I The Central Limit Theorem (CLT) provides the basis for
approximating the sampling distribution of certain statistics
using a normal curve

I For a sample mean, x̄ , it suggests:

x̄ ∼ N
(
µ, σ√

n
)

I Like before, we’ll need to replace the population parameters, µ
and σ, with suitable estimates from our sample to use this
approximation
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Confidences Intervals

CLT normal approximation:

x̄ ∼ N
(
µ, σ√

n
)

The approximation above suggests 95% confidence intervals of the
form:

x̄ ± 2 ∗ s√
n

Where:

I x̄ is the sample mean
I s is the sample standard deviation
I n is the sample size
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Confidence Interval Coverage

As with other methods, we should study whether these confidence
intervals are valid (Q: How might we do this?)

1. Draw many random samples from a normally distributed
population (which ensures a normal sampling distribution)

2. Construct a 95% confidence interval from each sample using
the formula on the previous slide

3. Track the proportion of these intervals containing the actual
population mean

4. This time we’ll repeat for different sample sizes ranging from
n = 2 to n = 30
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Confidence Interval Coverage

Does this normal approximation produce valid 95% confidence
intervals?
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William Gosset (1876 - 1937)

I Sadly we aren’t the first to discover this problem
I William Gosset was an English chemist who worked for

Guinness Brewing in the 1890s
I Gosset’s role at Guinness was to statistically evaluate the yield

of different varieties of barley
I These experiments prompted Gosset to question the validity of

established statistical procedures under small sample sizes

I In 1906, Gosset took a leave of absence from the brewery to
work on the problem with Karl Pearson (inventor of the
correlation coefficient)
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https://en.wikipedia.org/wiki/William_Sealy_Gosset


The t-distribution

I Gosset discovered that plugging in sample standard deviation,
s, in place of population standard deviation, σ, produces flawed
results when n is small
I This is because s has its own variability (separate from x̄), so

treating it like a known entity in the normal approximation leads
to intervals that systematically underrepresent the amount of
uncertainty involved in the confidence interval construction
procedure

I Gosset’s result, the t-distribution, was published under the
name “Student” because Guinness didn’t want its competitors
knowing that they employed statisticians!
I The t-distribution has since become of the most widely-used

statistical results of all time . . .
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The t-distribution

I Unlike the normal distribution, the shape of the t-distribution
depends upon the sample size via a parameter named degrees
of freedom (abbreviated df )
I In this context, “degrees of freedom” refers to the amount of

information available for estimating the standard deviation
I Once x̄ is known, the sum of the deviations,

∑n
i=1(xi − x̄),

must add up to zero, so not all n elements can vary freely
I Thus, when applying the t-distribution to the mean of a single

quantitative variable, df = n − 1

8 / 34



The t-distribution

I The t-distribution was derived under the assumption of a
normally distributed population
I Generally, population normality can be very difficult to judge

from a sample
I We tend to assume it’s a reasonable assumption, unless we can

see clear outliers or substantial skew in the sample
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The t-distribution
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The t-distribution
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The t-distribution
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The t-distribution
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How to use the t-distribution

I Gosset’s finding requires us to use an extra step when
constructing a confidence interval for a mean (or a difference in
means)

I For a single mean, we construct a P% confidence interval via:

x̄ ± t∗n−1
s√
n

I Where t∗n−1 is a quantile defining the middle P% of the
t-distribution with n − 1 degrees of freedom
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Example - Lead Exposure and IQ

I Researchers in El Paso, TX measured the IQ scores
(age-adjusted) of 57 children who lived within 1 mile of a lead
smelter and 67 children who lived at least 1 mile away
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1. Do these data appear to be normally distributed?
2. Could there be an association between Distance and IQ?

15 / 34



Example - Lead Exposure and IQ

With your group:

1. Download the LeadIQ data (available here on the course
website)

2. Construct two separate 95% confidence intervals for each
group’s mean (use Minitab to tabulate the necessary summary
statistics for each group, use StatKey to get t∗n−1, then
calculate the intervals by hand)

3. Use these intervals reach a conclusion regarding the impact of
distance from the smelter on IQ
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https://remiller1450.github.io/data/LeadIQ.csv


Example - Lead Exposure and IQ (solution)

The 95% confidence intervals are shown below:

x̄near ± t∗df =56 ∗ snear√nnear
= (86.0, 92.4)

x̄far ± t∗df =66 ∗ sfar√nfar
= (88.8, 96.6)

The large overlap in these intervals suggests we cannot be confident
in concluding that there is a population-level difference in IQ

17 / 34



Lead Exposure and IQ - Revisited

The previous approach was sub-optimal, it is better to look at the
difference in means (rather than each mean separately). To
understand why this is, we’ll need a new CLT result:

x̄1 − x̄2 ∼ N
(
µ1 − µ2,

√
σ2

1
n1

+ σ2
2

n2

)

Notice how the standard error of a difference in means is always less
then sum of the standard errors of each mean separately:√

σ2
1

n1
+ σ2

2
n2
<

√
σ2

1
n1

+
√

σ2
2

n2
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Lead Exposure and IQ - Degrees of Freedom

I This result requires us to use estimates of both σ1 and σ2, so
you might be wondering how to determine the correct degrees
of freedom. The answer is quite messy. . .

df =
( s2

1
n1

+ s2
2

n2

)2
s2
1/n1

n1−1 + s2
2/n2

n2−1

I Don’t ever calculate this by hand, use software!
I When doing textbook problems, use the smaller of n1 − 1 and

n2 − 1
I This is a conservative approach (it underestimates the actual

degrees of freedom and leads to wider intervals)
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Example - Lead Exposure and IQ

With your group:

1. Construct a 95% confidence interval for the difference in mean
IQ (far minus near). Based upon your interval, what do you
think of random chance as a possible explanation for the
difference in IQ seen in these data?

2. At a lower confidence level, could this study establish that
living near a lead smelter causes lower IQ?
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Example - Lead Exposure and IQ (solution)

1. The 95% CI is found by:

x̄far − x̄near ± t∗df =56 ∗
√

s2
far

nfar
+ s2

near
nnear

= 92.7 − 89.2 ± 2.003 ∗
√

16.02

66 + 12.22

56 = (−1.60, 3.88)

2. No, this is an observational study, so even if we had been able
to rule out random change, confounding variables cannot be
ruled out.
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Normality Assumptions?

I Recall that the t-distribution was derived under the assumption
of a normally distributed population

I In the lead-IQ example, it was reasonable to assume the
populations that the data came from are normally distribution
(why was this reasonable?)

I When the population is not normally distributed, confidence
intervals constructed using the t-distribution are generally still
valid for moderately large samples
I For a single mean, the rule of thumb is n ≥ 30
I For a difference in means, the rule of thumb is n1 ≥ 30 and

n2 ≥ 30
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Example - Salaries by Sex

I The American Community Survey (ACS) is an ongoing survey
conducted by the US Census Bureau

I A sample of these data is available on StatKey under the
“Bootstrapping for a Difference in Means” menu as “Employed
ACS (Income by Sex)”

I The data are coded such that 1 = Male and 0 = Female, with
salaries reported in thousands of dollars
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http://www.lock5stat.com/StatKey/bootstrap_1_quant_1_cat/bootstrap_1_quant_1_cat.html


Example - Salaries by Sex

With your group:

1. Describe the distribution of salary (within each sex)
2. Construct a 95% percentile bootstrap confidence interval for

the difference in means
3. Copy these data into Minitab, and use the “two-sample t”

menu to construct a 95% confidence interval for the difference
in means

4. Compare these two intervals, are you surprised?
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Example - Salaries by Sex (solution)

1. Salaries within each sex are very right-skewed
2. (-29.2, -9.6)
3. (-28.59, -9.02)
4. These intervals are slightly different (differing by less than 1

unit in either direction), but tell a similar story

The similarity of these confidence intervals despite the high degree
of skew is very impressive!
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Example - NY vs. NJ Home Prices

The dataset “Home Prices (NY vs NJ)” is available in StatKey and
contains home prices (in thousands of dollars) from random samples
of 30 homes in New York and 30 homes in New Jersey.

With your group:

1. Describe the distribution of price (within each state)
2. Use bootstrapping to construct a 95% confidence interval for

the difference in means
3. From the summary statistics provided by StatKey, use the

“two-sample t” menu to construct a 95% confidence interval for
the difference in means (Hint: use the dropdown menu inside
of “two-sample t”)

4. Compare these two intervals, are you surprised?
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http://www.lock5stat.com/StatKey/bootstrap_1_quant_1_cat/bootstrap_1_quant_1_cat.html


Example - NY vs. NJ Home Prices (solution)

1. Home prices within each state are very right-skewed
2. (-461.4, 56.3)
3. (-449, 95)
4. These intervals are somewhat different, particularly near the

right end-point (which differs by ~40)

The impact of the data’s skew on these intervals is much more
pronounced (relative to the salaries example), because the sample
sizes of n1 = 30, n2 = 30 are right at the threshold needed for CLT
to make up for the lack of normality

27 / 34



The Correlation Coefficient

The last statistic we will discuss CLT results for is the correlation
coefficient:

r ∼ N
(
ρ,

√
1 − ρ2

n − 2
)

Leading to confidence intervals of the form:

r ± z∗
√

1 − r2

n − 2

Will we need to use t-distribution? Yes, sx and sy are used in place
of σx and σy when calculating r
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The Correlation Coefficient

I Because we estimated two extra parameters, we’ll need to use
a t-distribution with n − 2 degrees of freedom to construct a
P% confidence interval:

r ± t∗n−2

√
1 − r2

n − 2

I Again, t∗n−2 is the percentile that defines the middle P% of the
t-distribution with n − 2 degrees of freedom
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Example - Mercury vs. pH in Florida Lakes

The dataset “Florida Lakes (Mercury as a function of pH)” is
available in StatKey and contains mercury and pH measurements
from 53 lakes in Florida.

With your group:

1. Use bootstrapping to construct a 95% confidence interval for
the population-level correlation between mercury and pH in
these lakes

2. Use the CLT normal approximation from the previous slide to
construct a 95% confidence interval (be sure you use the
t-distribution)

3. Compare these two intervals (noting the shape of the bootstrap
distribution)
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http://www.lock5stat.com/StatKey/bootstrap_2_quant/bootstrap_2_quant.html


Example - Mercury vs. pH in Florida Lakes

1. Using bootstrapping, the 95% CI estimate of ρ is (-.72, -.39)
2. Here we should use t∗n−2 = 2.007, then:

−.575 ± 2.007 ∗
√

1−(−.572)2

53−2 = (−.805,−.345)
3. These intervals are slightly different, likely due to the sampling

distribution being slightly skewed
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Summary

I Proper use of the Central Limit Theorem for a mean, or a
difference in means, or a correlation coefficient, requires the
t-distribution
I This modified distribution is necessary to properly account for

the added uncertainty introduced by using the sample standard
deviation, s, instead of σ, the population standard deviation

I This changes the multiplier of SE when determining our
interval’s margin of error, otherwise the calculation is just like
what we’ve done before (Estimate ± c ∗ SE )
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Summary

I The t-distribution depends upon a parameter known as degrees
of freedom, or df
I For a single mean, we used n − 1 degrees of freedom because

we needed to estimate 1 extra parameter
I For a difference in means, this was complicated, but we used

the minimum of n1 − 1 and n2 − 1
I For a correlation coefficient, we used n − 2 degrees of freedom

because we needed to estimate 2 extra parameters

I Finally, remember that the t-distribution was derived
specifically for small samples from normally distributed
populations
I You do not need a large n to use it (so long as the data appear

reasonably normal)
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Conclusion

Right now you should. . .

1. Understand reason why the t-distribution is necessary
2. Know how to construct P% confidence intervals using the

t-distribution
3. Know the limitations of these approaches, the assumptions

involved, and when to use bootstrapping as an alternative

These notes cover the “CI” parts of Ch 6 from our textbook, I
encourage you to read through those subsections of the chapter
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