Sampling Distributions

Ryan Miller

Statistical Inference

A major goal of statistics is inference, or using a sample to learn about a population. Today we will walk through the train-of-thought behind how statisticians have traditionally approached statistical inference.

Statistical Inference

A major goal of statistics is inference, or using a sample to learn about a population. Today we will walk through the train-of-thought behind how statisticians have traditionally approached statistical inference.

- In this activity, the population is end of semester grades of my previous Sta-209 students
- I won't give you the population, but I'll let you take as many random samples of size $n=10$ as you want

Statistical Inference

A major goal of statistics is inference, or using a sample to learn about a population. Today we will walk through the train-of-thought behind how statisticians have traditionally approached statistical inference.

- In this activity, the population is end of semester grades of my previous Sta-209 students
- I won't give you the population, but l'll let you take as many random samples of size $n=10$ as you want
- Our short-term goal will be see what we can learn about a population by repeatedly taking random samples
- Our long-term goal will be to apply this insight to situations involving only a single random sample

The Population Distribution

- The population distribution contains all of the information about the variable of interest
- In our example, we could view the population distribution using a table or barchart of the end of semester letter grades

The Population Distribution

- The population distribution contains all of the information about the variable of interest
- In our example, we could view the population distribution using a table or barchart of the end of semester letter grades
- In most situations, statisticians choose to focus on a single statistic that summarizes a single aspect of the population they are most interested in
- With your group, decide upon a statistic that you're interested in from this population

Estimation

- Suppose you're interested in the proportion of A's in the population, denoted p_{A}
- How would you estimate p_{A} from a single random sample?
- How likely is it that your estimate is exactly p_{A} ?

Estimation

- The logical estimate of p_{A} is the sample proportion of A's, denoted \hat{p}_{A}
- This estimate is unlikely to be exactly p_{A}, but for most samples it should be pretty close

Estimation

- The logical estimate of p_{A} is the sample proportion of A's, denoted \hat{p}_{A}
- This estimate is unlikely to be exactly p_{A}, but for most samples it should be pretty close
- Quantifying exactly how close \hat{p}_{A} is to p_{A} is a goal for what we'll do today
- How might you approach this goal? (acknowledging that l'll never provide the true p_{A})

Sampling Distribution Activity - Directions

This is the only time we'll use R in this class, but it is the software of choice for most statisticians, and you'll use it in future stats classes (if you choose to take them).

1. Open RStudio and type: source("https: //remiller1450.github.io/s209s20/funs.R")
2. Enter sample_grades() to generate a random sample of student's end of semester grades
3. Find the proportion of A's in your sample and record it
4. Repeat steps 1-3 until you've recorded results from many different random samples

These values represent the distribution of possible sample proportions that could occur when taking a random sample of size $n=10$ from this population. With your group, discuss why it is important to study this distribution.

Sampling Distribution Activity - Some Questions

1. Based off the sampling distribution (the dotplot on the board), what do you think p_{A} is?
2. Had you only collected a single random sample of size 10 , what would you expect is the most likely value of \hat{p}_{A} for that sample?
3. How much variability is there across different samples?
4. Could we use this variability to come up with an interval estimate of p_{A} ?

Sampling Distribution Activity - Answers

1. Assuming the samples are representative, p_{A} is the center of the sampling distribution! This is because the sample statistic \hat{p}_{A} is unbiased
2. p_{A} is the center of the sampling distribution, so \hat{p}_{A} is most likely to be p_{A} !
3. We can assess the variability of the possible sample means that we could see by looking at the standard deviation of the sampling distribution, this is called the standard error (SE) since it describes an estimate
4. We could provide estimates of p_{A} that look like $\hat{p}_{A} \pm c * S E$. The 68-95-99 rule could help us choose c (at least for sampling distributions with the right shape)

Confidence Intervals

- Intervals of the form Estimate \pm MOE, where MOE is a carefully determined margin of error, are known as confidence intervals
- We will spend the next couple of weeks studying confidence intervals in greater detail
- For now, we'll see how a few different factors (like sample size and sampling bias) impact a sampling distribution

The Role of Sample Size

The sampling distribution depends upon:

1. The parameters of the population distribution
2. The size of the sample
3. How the sample was collected

The Role of Sample Size

The sampling distribution depends upon:

1. The parameters of the population distribution
2. The size of the sample
3. How the sample was collected

- We'll first investigate the role of sample size using StatKey, a free online companion to the Lock5 textbook: StatKey Link
- We'll look at the "NFL Contracts" dataset that comes pre-loaded in StatKey

The Role of Sample Size - Directions

- Open StatKey at lock5stat.com/StatKey and navigate to "Sampling Distribution for a Mean"
- Select the "NFL Contracts" dataset in the top left (under the red StatKey logo)
- Describe the shape of the population distribution
- Describe the shape of the sampling distribution of samples of sizes $n=10, n=30$ and $n=100$
- Record the standard error of each sampling distribtuion created above

The Role of Sample Size - Results

Sampling distribution of \bar{x} for 1000 samples of size $n=10$
Sampling Dotplot of Mean

The Role of Sample Size - Results

Sampling distribution of \bar{x} for 1000 samples of size $n=30$
Sampling Dotplot of Mean

The Role of Sample Size - Results

Sampling distribution of \bar{x} for 1000 samples of size $n=100$
Sampling Dotplot of Mean

The Role of Sample Size - Results

Sampling distribution of \bar{x} for 1000 samples of size $n=1000$
Sampling Dotplot of Mean

The Role of Sample Size

Sampling distribution of \bar{x} when the entire population is sampled
Sampling Dotplot of Mean

The Role of Sample Size - Conclusions

- As the size of our sample increases, the standard error, denoted $S E$, of our sample statistic decreases
- Standard error is the standard deviation of a sample statistic (ie: it describes variability in the sampling distribution)

Sampling Bias

- Quarterbacks represent 4.3% of NFL players but tend to receive a disproportionate amount of media attention and are paid higher salaries than other positions
- Suppose we sample in a way that makes QBs four times more likely to be sampled than other positions, how might this influence the sampling distribution (for estimates, \bar{x}, of mean the NFL salary)?
- What if QBs were ten times more likely to be sampled?

Sampling Bias

Histogram of Sample Means ($\mathrm{n}=\mathbf{1 0 0}$)

Sampling Bias

Histogram of Sample Means ($\mathrm{n}=\mathbf{1 0 0}$)

Sampling Bias

Histogram of Sample Means ($\mathbf{n}=\mathbf{3 0 0}$)

Sampling Distributions - Conclusions

- Larger samples tend to provide better estimates if the samples are representative
- But larger sample size cannot fix sampling bias, it actually can exacerbate it
- Next we'll see how the sampling distribution can be used to construct confidence intervals and exactly how special it is for these intervals to be meaningful

Conclusion

Right now you should:

1. Understand the relationships between the population distribution, the sample distribution, and the sampling distribution
2. Be comfortable with the terminology of parameters and statistics
3. Understand, when we only have one sample, the sample statistic is our best guess at the population parameter
4. Understand the impact of bias and sample size (variability) on the sampling distribution

If you want more information:

- Read Ch 3.1

