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Normal Distributions

We’ve now seen several bootstrap distributions and you may have
noticed they tend to be “bell-shaped”:
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This is not a coincidence, it’s backed up by statistical theory
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Normal Distributions

Bootstrap distributions can be characterized by the curve:

f (x)= 1p
2πσ2

e−
(x−µ)2

2σ2

Ï This curve defines the Normal Distribution
Ï µ is the center (mean) of the distribution
Ï σ is the standard deviation of the distribution
Ï We use the shorthand N(µ,σ) to express a normal distribution,

for example: N(3,1) is a curve centered at 3 with a standard
deviation of 1

Ï You don’t need to know the formula for the normal curve,
though you should know that it depends on µ and σ
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Normal Approximation

Ï When calculating a confidence interval estimate, we can use a
normal approximation instead of bootstrapping

Ï To do this, we need the distribution’s mean and standard
deviation (since any normal curve is entirely by µ and σ)

Ï Thus, the approximation will be N(estimate,SE)
Ï We saw the bootstrap distribution was centered around the

estimate from the original sample
Ï We generated bootstrap samples and bootstrap statistics to

find SE , but is there another way?
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Central Limit Theorem

Ï The Central Limit Theorem (CLT), one of the most
well-known results in statistics, provides a mathematical
expression for the SE of many commonly used descriptive
statistics

Ï We’ll first look at a CLT result for one proportion:

p̂ ∼N
(
p,

√
p(1−p)

n

)
In words, the sample proportion, p̂, follows a normal distribution
with a mean of p and standard deviation of

√
p(1−p)

n , thus providing
a normal approximation of the sampling distribution
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Using the CLT (one proportion)

Central Limit theorem gives us:

p̂ ∼N
(
p,

√
p(1−p)

n

)

Ï Thus, SE =
√

p(1−p)
n when estimating a single proportion

Ï We don’t know p, but p̂ is our best estimate, together these
suggest the 95% confidence interval:

p̂±2∗
√

p̂(1−p̂)
n
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Confidence Interval Coverage

The phrase “95% confidence” describes the long-run success rate of
the procedure used to calculate the interval. So let’s apply the
procedure from the previous slide to many random samples of size
n = 20 from a population with p = 0.415:

Sample ID Sample proportion Calculation 95% CI
1 0.4 0.4 +/- 2* 0.11 (0.181,0.619)
2 0.25 0.25 +/- 2* 0.097 (0.056,0.444)
3 0.45 0.45 +/- 2* 0.111 (0.228,0.672)
4 0.4 0.4 +/- 2* 0.11 (0.181,0.619)
5 0.45 0.45 +/- 2* 0.111 (0.228,0.672)
6 0.4 0.4 +/- 2* 0.11 (0.181,0.619)
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Confidence Interval Coverage

When we apply this procedure 200 times, only 3 intervals fail to
capture the true p, suggesting the procedure is valid (but perhaps
slightly conservative):
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Confidence Interval Coverage

A long-run success rate that is slightly above 95% makes sense, as a
normal approximation of the sampling distribution is decent but not
perfect:
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Practice

In a study conducted by Johns Hopkins University researchers
investigated the survival of babies born prematurely. They searched
their hospital’s medical records and found 39 babies born at 25
weeks gestation (15 weeks early), 31 of these babies went on to
survive at least 6 months. With your group:

1. Use a normal approximation to construct a 95% confidence
interval estimate for the true proportion of babies born at 25
gestation that are expected to survive.

2. An article on Wikipedia suggests 70% of babies born at 25
weeks gestation survive. Is this claim consistent with the Johns
Hopkins study?
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https://en.wikipedia.org/wiki/Fetal_viability


Practice - Solution

1. p̂ = 31/39= 0.795, using the normal approximation provided by
CLT, SE =

√
p̂(1−p̂)

n =
√

0.795(1−0.795)
39 = 0.065; this suggests the

95% CI:
0.795±2∗0.065= (0.668,0.922)

2. Yes, 0.70 is contained in the 95% confidence interval,
suggesting it is a plausible value of the population parameter.
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Sufficiently Large?

The normal approximation suggested by the Central Limit Theorem
is only accurate when n is sufficiently large

Ï For a single proportion, “sufficiently large” also depends upon
the value of p

Ï A common rule of thumb for whether this normal
approximation of p̂ is reasonable requires:

1. n∗p ≥ 10
2. n∗ (1−p)≥ 10

If either of these conditions isn’t met you should consider an
alternative (our lab will introduce exact binomial confidence
intervals)
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Confidence Levels that aren’t 95%

Confidence intervals have the form:

Estimate±c ∗SE

Ï Normal approximations allow us to achieve any confidence level
via the choice of “c”

Ï “c” is chosen as a cut-point from the standard normal
distribution, which has a mean of 0 and standard deviation of 1

Ï The “Theoretical Distribution” menu on StatKey helps us find
the cut-point defining to the middle P% of the distribution
(yielding a P% CI)
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http://www.lock5stat.com/StatKey/theoretical_distribution/theoretical_distribution.html#normal


Conclusion

We’ve now seen how to use a Normal approximation to construct a
confidence interval estimate for a single proportion.

Ï We can estimate p using an interval of the form:

p̂±c ∗
√

p̂(1−p̂)
n

This formula is only reliable when the sample is sufficiently large.
Exact approaches should be used for small samples.
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