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Introduction

Last week we learned about one-way ANOVA, which involves the
statistical model:

yi =µi +ϵi

This model is equivalent to linear regression with a single categorical
predictor.
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Introduction (cont.)

In the context of one-way ANOVA we also discussed two types of
hypothesis tests:

1. Global tests - H0 :µ1 =µ2 = . . . =µk
2. Pairwise tests - H0 :µ1 =µ2, H0 :µ1 =µ3, etc.

Our focus today will be extending these ideas to other linear
regression models (ie: those with quantitative predictors, multiple
predictors, etc.)
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Introduction (cont.)

The global hypothesis test in one-way ANOVA compares two models
for the data:
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Introduction (cont.)

Ï If the alternative model was superior to the null model, it’s sum
of squared residuals (SSE) will be significantly smaller than the
sum of squared residuals of the null model (SST)

Ï In other words, the F-test in ANOVA is just a comparison of
SSE and SST for two models

Ï We can use this F-test for any two models that are nested,
meaning the smaller model is a special case of the more
complex model

Ï For example, we can consider the following two models:

Model 1 : yi = b0+b2∗xi +ϵi

Model 2 : yi = b0+ϵi

Model 2 is a special case of Model 1 where b2 = 0, thus these
models are nested.

5 / 19



F-tests for Linear Regression

In the examples that follow we’ll consider data from a study of
occupational prestige involving n = 98 job categories. We’ll use the
variables:

Ï prestige: the average prestige rating of the job (from 0 to 100)
Ï education: the average number of years of schooling for

people holding the job
Ï type: the type of job, either skilled professional (prof), blue

collar (bc), or white collar (wc)

We’ll begin by comparing:

Ï Model 1: prestige ~ 1 (null model of yi =µ+ϵi)
Ï Model 2: prestige ~ education (alternative model of

yi = b0+b1∗education+ϵi)
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F-tests for Linear Regression

Here’s what the F-test comparing these models is based upon:
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Remember that each sum of squares is defined: SS =∑n
i=1(yi − ŷi)2,

and F = (SST−SSE)/(d1−d0)
SE
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F-tests for Linear Regression

We could also compare an even larger model, Model 3, which
includes one categorical and one quantitative predictor vs. Model 1
or vs. Model 2
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F-tests for Linear Regression

We’ll exclusively use R for F-tests involving regression models:

mod1 = lm(prestige ~ 1, data = df)
mod2 = lm(prestige ~ education, data = df)

anova(mod1, mod2)

## Analysis of Variance Table
##
## Model 1: prestige ~ 1
## Model 2: prestige ~ education
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 97 28346.9
## 2 96 7064.4 1 21283 289.21 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We reject the null hypothesis of “no difference between models” and
conclude that there is overwhelming evidence (p < 0.0001) that
Model 2 is a better fit for these data.
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F-tests for Linear Regression

Here’s the comparison between Model 3 and Model 2:

mod2 = lm(prestige ~ education, data = df)
mod3 = lm(prestige ~ education + type, data = df)

anova(mod2, mod3)

## Analysis of Variance Table
##
## Model 1: prestige ~ education
## Model 2: prestige ~ education + type
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 96 7064.4
## 2 94 5740.0 2 1324.4 10.844 5.787e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We see that Model 3 is an even better fit for the data than Model 2.
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F-test for Linear Regression

For illustrative purposes, let’s add another explanatory variable
that’s just a bunch of random values (the output of rnorm()):

df <- df %>% mutate(RX = rnorm(nrow(df)))
mod4 = lm(prestige ~ education + type + RX, data = df)

anova(mod3, mod4)

## Analysis of Variance Table
##
## Model 1: prestige ~ education + type
## Model 2: prestige ~ education + type + RX
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 94 5740.0
## 2 93 5739.1 1 0.89813 0.0146 0.9042

As we’d expect, the sum of squares drops slightly, but the p-value is
very high. So, we conclude there’s no evidence that this larger
model, mod4, is better.
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F-test Assumptions

The primary assumptions of the F-test for comparing nested
regression models is that the errors of the larger model are
independent and Normally distributed:
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F-test Assumptions

We can assess independence by graphing the residuals vs. the
model’s predictions:
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If errors are independent, we expect there to be no pattern, since an
error of a given magnitude is equally likely anywhere
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F-test Assumptions

We can assess Normality using a quantile-quantitle, or QQ-plot:
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If errors are Normally distributed, we expect the standardized
residuals (Z -scores of the observed residuals) to match the Z -scores
for those observation’s percentiles in a Normal distribution, leading
to a 45-degree line in the QQ-plot
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F-test Assumptions

Ï The residuals not only need to follow a Normal distribution,
but must follow the same Normal curve everywhere, meaning
they need to exhibit the same amount of variability

Ï The term heteroscedasticity describes scenarios when the
variability of the residuals differs throughout the model
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F-test Assumptions

Checking these assumptions can also help us determine if we’re
using an inappropriate model for our data:
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We see a pattern in the residuals because this model tries to use a
straight line to represent a quadratic relationship
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F-test Assumptions

If one or more of the assumptions of our linear regression model are
not met, any p-values we calculate might not be accurate. There
are a variety of proposed solutions, we’ll focus on the following:

1. Transforming the outcome variable using logarithms (covered in
today’s lab)

2. Improving the fit of the model by including omitted variables or
changing the functional form of the included variables using
polynomials

3. Reporting our results with caution
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t-tests for Regression Coefficients

Ï Regression is commonly used to isolate the effect of an
explanatory variable on the outcome after adjusting for other
factors

Ï It’s possible to use a t-test to evaluate H0 : bj = 0, or the null
hypothesis that variable j has no effect on the outcome (after
adjusting for everything else in the model)

mod3 = lm(prestige ~ education + type, data = df)
summary(mod3)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.698159 5.736093 -0.4703828 6.391712e-01
## education 4.572793 0.671564 6.8091697 9.159877e-10
## typeprof 6.142444 4.258961 1.4422401 1.525583e-01
## typewc -5.458495 2.690667 -2.0286769 4.532001e-02

Ï After adjusting for education, our model suggests that white
collar jobs have significantly less prestige than blue collar jobs
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Hidden Extrapolation

A final cause for concern when interpreting adjusted effects is
hidden extrapolation, or making conclusions about segments of the
population that don’t exist.
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We may want to avoid comparisons of prof and bc jobs adjusted to
have the same level of education because no such jobs exist in our
data.
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