Correlation

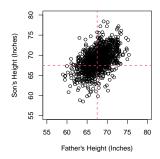
Ryan Miller

Introduction

- Our previous lecture introduced methods for numerically describing associations between *two categorical variables*
 - These included differences or ratios of conditional proportions, and odds ratios
- Today we'll introduce methods for numerically describing associations between two quantitative variables

Pearson's Heights

In the 1880s, the scientific community was fascinated by the idea of quantifying heritable traits


Karl Pearson, a now famous statistician, collected data on the heights (inches) of 1,078 fathers and their fully-grown first-born sons:

Father	Son	
65	59.8	
63.3	63.2	
65	63.3	
65.8	62.8	

Pearson's Heights

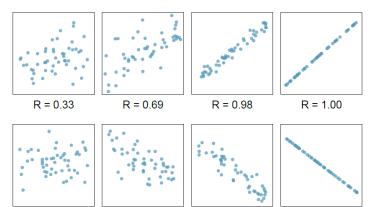
Here are Pearson's height data on a scatter plot. The red lines are the mean of each variable.

Does height appear to be heritable?

Pearson's Correlation Coefficient

 Adult heights of fathers and sons are clearly associated, but Pearson wanted to *quantify* how strongly they are associated
Building upon an idea from the French scientist Francis Galton, he developed **Pearson's correlation coefficient**:

 $r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_i} \right) \left(\frac{y_i - \overline{y}}{s_i} \right)$


Here, x̄ and ȳ are the mean values of two quantitative variables, X and Y

 \triangleright s_x and s_y are the standard deviations of these variables

Examples

Pearson's correlation, *r*, quantifies the *strength of linear association* between two quantitative variables

R = 0.08

R = -0.92

Correlation vs. Strength of Association

Whether a correlation is considered "strong" or "weak" depends upon the field:

	orrelation oefficient	Dancey & Reidy (Psychology)	Quinnipiac University (Politics)	Chan YH (Medicine)
+1	-1	Perfect	Perfect	Perfect
+0.9	-0.9	Strong	Very Strong	Very Strong
+0.8	-0.8	Strong	Very Strong	Very Strong
+0.7	-0.7	Strong	Very Strong	Moderate
+0.6	-0.6	Moderate	Strong	Moderate
+0.5	-0.5	Moderate	Strong	Fair
+0.4	-0.4	Moderate	Strong	Fair
+0.3	-0.3	Weak	Moderate	Fair
+0.2	-0.2	Weak	Weak	Poor
+0.1	-0.1	Weak	Negligible	Poor
0	0	Zero	None	None

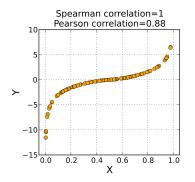
Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107969/

Z Scores

Pearson's correlation coefficient doesn't depend upon the units or context of the data due to its use of **z-scores**, or standardized representations of individual data-points:

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$
$$= \frac{1}{n-1} \sum_{i=1}^{n} (z_{x_i}) (z_{y_i})$$

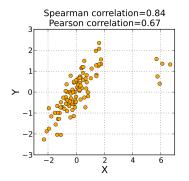
These Z-scores, $z_{x_i} = \frac{x_i - \overline{x}}{s_x}$, reflect the standardized difference between an observed value, x_i , and the mean of the corresponding variable, \overline{x} .



- ► In Pearson's data, sons had an average height of x̄ = 63.3 inches with a standard deviation of s_x = 2.8
 - So, we could describe a son who measured 68.7 inches as being 5.4 inches above average
 - Or we could use the z-score: $z = \frac{68.7-63.3}{2.8} = 1.9$, meaning they are 1.9 standard deviations above average
- Z-scores are most useful when data exist on different measurement scales or involve highly-specialized units

Nonlinear Relationships

Spearman's rank correlation is an alternative that is suitable for quantifying the strength of non-linear associations:



The values of X and Y are separately ranked from 1 to n and these ranks are used as variables in the correlation calculation.

Spearman's Rank Correlation

Spearman's rank correlation is also more *robust* to outliers:

However, a downside of Spearman's correlation (and Pearson's correlation too) is that it only captures *monotonic* associations

Common Misconceptions

From Cook & Swayne's Interactive and Dynamic Graphics for Data Analysis:

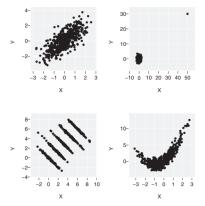
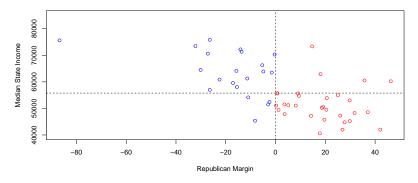
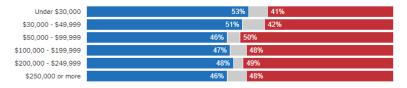



Fig. 6.1. Studying dependence between X and Y. All four pairs of variables have correlation approximately equal to 0.7, but they all have very different patterns. Only the top left plot shows two variables matching a dependence modeled by correlation.

Common Misconceptions


2016 Election Results by State

▶ r = -.63, so do republicans earn lower incomes than democrats?

The Ecological Fallacy

Using 2016 exit polls, conducted by the NY Times (Link), we can get a sense of how party vote and income are related *for individuals*:

- Looking at individuals as cases there is an opposite relationship between political party and income
- ► This "reversal" is an example of the ecological fallacy
 - Inferences about individuals cannot necessarily be deduced from inferences about the groups they belong to

Conclusion

Pearson's correlation coefficient is a common way to measure the strength of linear association

Correlation is the average product of z-scores

- You may opt for Spearman's rank correlation if your data contain outliers or non-linear (but monotonic) relationships
- Be careful when interpreting ecological correlations, you need to carefully consider how a case is defined in your data, particularly when aggregation is involved

