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Introduction

Statistical tests adopt the following framework:

1. Researchers form a null hypothesis that they seek evidence
against

2. The compatibility of the observed data and null hypothesis is
assessed using the p-value

3. If the p-value provides sufficient evidence against the null
hypothesis the researcher will reject it in favor of an alternative

The culmination of this framework is the decision to either reject
the null hypothesis or conclude that data provides insufficient
evidence against it.
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Decision Errors

Because we don’t know the true status of the null hypothesis, any
decision from a hypothesis test might be correct or incorrect:

Ï A Type I error occurs when the null hypothesis is rejected, but
in reality it is true

Ï A Type II error occurs when the null hypothesis cannot be
rejected, but in reality it is false
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Trade-offs

Ï Recall that α is a threshold used to determine “statistical
significance”, with α= 0.05 being a widely used threshold

Ï Using α= 0.05 we can expect a Type I error in 5% of instances
where H0 is true

Ï What could we do to reduce the rate of Type I errors? How
would this impact the chances of making a Type II error?

Ï Setting a stricter criteria for statistical significance by reducing
α decreases the chances of making a Type I error, but it
increases the chances of making a Type II error
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Error Rates

Suppose a large number of hypotheses are tested and the results are
recorded in the table below:

True Null Hypothesis False Null Hypothesis
Fail to Reject Null a b
Reject Null c d

Ï The Type I error rate is defined as c
a+c , or the fraction of true

null hypotheses that are incorrectly rejected
Ï The Type II error rate is defined as b

b+d , or the fraction of
false null hypotheses that were not rejected

Ï The complement of the Type II error rate, or d
b+d , is known as

the testing procedure’s statistical power
Ï The false discovery rate is defined as c

c+d , or the fraction of
rejected hypotheses that were incorrectly rejected
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Multiple Hypothesis Tests

Many scientific studies involve multiple hypotheses, an example is
presented below:

Ï The NADS organization looked at the relationship between
drug use and tailgating behavior while driving

Ï They classified participants into 4 groups according to the
“hardest” substance they regularly used (No Drug, Alcohol,
THC, or MDMA)

Ï These participants then drove a simulated route in an advanced
driving simulator, and the researchers recorded their average
following distance behind a lead vehicle as one of the study’s
outcomes
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Multiple Hypothesis Tests

If the researchers wanted to compare the mean following distances
in each drug use group, how many different tests would they need
to perform?
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Multiple Hypothesis Tests

Since there are 4 different groups we’d like to compare, 6 different
hypothesis tests are possible:

1. ALC vs NODRUG, p-value = 0.5102
2. ALC vs MDMA, p-value = 0.00417
3. ALC vs THC, p-value = 0.8959
4. THC vs NODRUG, p-value = 0.4782
5. THC vs MDMA, p-value = 0.01383
6. MDMA vs NODRUG, p-value = 0.00216

If we compare each test’s p-value against α= 0.05, will the entire
set of conclusions from this experiment (as a whole) still have a 5%
Type I error rate?
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The Bonferroni Adjustment

If the null hypothesis is true for all 6 pairwise tests, and the tests
are independent, using α= 0.05:

Pr(At least one type I error)= 1−Pr(No type I errors)
= 1− (1−0.05)6 = 26.5%

This suggests a simple correction to significance threshold:
α∗ =α/h, where h is the number of hypothesis tests being
performed. Then:

Pr(At least one type I error)= 1−Pr(No type I errors)
= 1− (1−0.05/6)6 ≈ 5%
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The Bonferroni Adjustment

Setting α∗ =α/h is known as the Bonferroni Adjustment. If we
apply this correction, how many of the 6 hypotheses can be rejected
with a family-wise Type I error rate of 5%?

1. ALC vs NODRUG, p-value = 0.5102
2. ALC vs MDMA, p-value = 0.00417
3. ALC vs THC, p-value = 0.8959
4. THC vs NODRUG, p-value = 0.4782
5. THC vs MDMA, p-value = 0.01383
6. MDMA vs NODRUG, p-value = 0.00216

Using α∗ = 0.05/6= 0.0083 only 2 of 6 tests are now considered
“statistically significant”, but we’ve controlled the family-wise Type I
error rate at 5%.
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Bonferroni Adjusted p-values

Ï Occasionally you’ll see a study report adjusted p-values
Ï For the Bonferroni adjustment, these are found by multiplying

the original p-values by h (the number of tests)
Ï “Bonferroni Adjusted p-values” can then be compared directly

to the target family-wise Type I error rate
Ï For example, comparing the adjusted p-values against 0.05 will

achieve a 5% family-wise Type I error rate
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Practice

A genetic association study tested 7129 genes for differences in
expression levels between two types of leukemia.

1) If all 7129 tests were done using α= 0.01, and there are no
genetic differences between these two types of leukemia, how
many “statistically significant” genes would be expected?

2) Suppose 783 genes had p-values less than 0.01, do you believe
there is association between some genes and type of leukemia

3) Suppose you wanted to use the Bonferroni adjustment to
ensure a Type I error rate no larger than 5%. What would your
adjusted significance threshold be?

4) Suppose the “most significant” gene had a p-value of 0.000001,
what is its Bonferroni Adjusted p-value?
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False Discovery Rates vs. Type I Error Control

A genomics study measured the expression levels of 17,322 genes to
identify genes that are co-expressed with BRCA1, a gene that is
well-known to be associated with breast cancer. For each gene a
hypothesis test was performed, and the p-values of these tests are
displayed using a histogram:
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False Discovery Rates vs. Type I Error Control

Ï Suppose we apply the Bonferroni adjustment to control the
family-wise type I error rate at 10%

Ï α∗ = 0.1/3226= 0.00003
Ï The study yields 2 statistically significant genes (with p-values

less than 0.00003)
Ï Suppose we seek to control the false discovery rate at 10%

Ï This isn’t as easy to do ourselves, but there are 24 genes that
can be selected

Ï Among these 24 genes we’d expect 2 or 3 to be false positives
Ï This example illustrates the overly stringent nature of the

Bonferroni adjustment
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Conclusion

Ï Hypothesis tests provide a tool for making a decision about
some aspect of a population, such as deciding whether two
variables are associated

Ï The truth about the population is unknown, so we’ll never know
for certain if a hypothesis test leads to the correct conclusion

Ï Fortunately, setting a significance threshold (such as α= 0.05)
will limit the chances of making a Type 1 Error (to 5%, for
example)

Ï When multiple hypothesis tests are conducted on the same
data we should be mindful that each individual test has its own
chance of producing an incorrect conclusion

Ï The Bonferroni Adjustment and false discovery rate control
methods are useful in these scenarios, particularly when the
number of tests is very large (ie: hundreds or thousands)
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