
Logistic Regression
Part 1 - model basics and coefficient interpretations
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Introduction

Below is a graph of each shot attempted by Stephen Curry in the
2014-15 NBA season where the outcome was recorded as binary:
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The blue line is a simple linear regression model fit to these data,
are there any problems with this model?
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Introduction (cont.)

Below is the same graph for DeAndre Jordan:
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Clearly this is an inappropriate modeling approach if it suggests
negative probabilities for a large range of values that were observed
in the data.
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Logistic Curve

Logistic regression takes the form:

log
( Pr(y=1)

1−Pr(y=1)
)=β0+β1X1+ . . .+βpXp

This produces a logistic curve for Pr(y = 1) as a function of Xj :

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Distance (ft)

M
ad

e

DeAndre Jordan Shots

4 / 11



Logistic Curves

The shape of a logistic curve depends upon its parameters. We
won’t cover the details, but we’ll rely upon R to estimate the
parameters of the best-fitting logistic curve for our sample data.
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Model Coefficients

In logistic regression each variable makes a linear contribution to the
log-odds of the outcome coded as “1”

log
( Pr(y=1)

1−Pr(y=1)
)=β0+β1X1+ . . .+βpXp

The fitted logistic regression model for Stephen Curry is:

log
( ŷ

1−ŷ
)= 0.75−0.05 ·Distance

So, for every 1-ft increase in distance we’d expect the log-odds of
Steph making the shot to decrease by 0.05, which isn’t a very
digestible interpretation.
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Model Coefficients (cont.)

Fortunately, we can use arithmetic to make sense of things:

log
( Pr(y=1)

1−Pr(y=1)
)=β0+β1X1+ . . .+βpXp

=⇒ Pr(y=1)
1−Pr(y=1) = exp(β0+β1X1+ . . .+βpXp)

=⇒ Pr(y=1)
1−Pr(y=1) = exp(β0) ·exp(β1X1) · . . . ·exp(βpXp)

Ï The exponent of the intercept represents the baseline odds
Ï The exponent of β1, . . . ,βp is a multiplier of the baseline odds
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Interpreting the Intercept

Our fitted logistic regression model for Stephen Curry is:

log
( ŷ

1−ŷ
)= 0.75−0.05 ·Distance

Because exp(0.75)= 2.12, the odds Steph makes a shot from a
distance of zero feet (right underneath the basket) are 2.12

Ï Steph is expected to make 2.12 shots from this distance for
every 1 he misses

Ï This is an implied probability of 68%
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Interpreting the Slope

Our fitted logistic regression model for Stephen Curry is:

log
( ŷ

1−ŷ
)= 0.75−0.05 ·Distance

Because exp(−0.05)= 0.951, each additional 1-ft in distance
changes the odds of Steph making a shot by a multiplicative factor
of 0.951, or a 4.9% decrease
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Interpreting Binary Explanatory Variables

When an explanatory variable in logistic regression is binary, exp(βj)
gives us an estimated odds ratio. Consider the model:

log
( Pr(y=1)

1−Pr(y=1)
)=β0+β1 · (Location=Home)

Ï When a shot is taken during an away game the expected odds
it being made are OddsA = exp(β0)

Ï For a home game: OddsH = exp(β0 +β1)
Ï Dividing the expected odds to get an odds ratio:

OddsH
OddsA

= exp(β0+β1)
exp(β0) = exp(β0) ·exp(β1)

exp(β0) = exp(β1)
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Conclusion

Ï Logistic regression gives us a sensible statistical model for
expressing a binary outcome as a function of several
explanatory variables

Ï The log-odds of the outcome encoded as “1” are modeled by a
linear combination of the explanatory variables

Ï This implies an S-shaped logistic curve relating each explanatory
variable and Pr(y = 1)

Ï To interpret an estimated coefficient, we must first apply an
inverse function (exp) to undo the log-odds transformation on
the outcome
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