Logistic Regression
Part 2 - likelihood ratio tests
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Introduction

> When fitting a logistic regression we've used the argument
family="binomial" in the glm() function

> This specifies the probability distribution involved in the model

> For a single observation, the binomial distribution leads to the
following likelihood function:

Pr(y=1)-(1-Pr(y=1))"~

> In logistic regression, after applying the inverse function of
log-odds, Pr(y =1) is modeled by Trom(

1
—(Bo+B1X1+...))

» Thus, our modeling choices, such as which explanatory variables
to include, influence the likelihood function
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Likelihood

This likelihood function allows us to measure how well our model is
doing:

Pr(y =1)"-(1-Pr(y =1))"™

> If a data-point is observed to have y =1, this expression
reduces Pr(y =1)
> A highly effective model should produce an estimate of
Pr(y =1) that is close to 1 for this data-point
> A non-informative model should produce an estimate of
Pr(y =1) far from 1 (close to 0.5 if the data are balanced)
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Likelihood (cont.)

Likelihood function (one data-point)

Pr(y =1)"-(1-Pr(y =1))"™

> Similarly, if a data-point is observed to have y =0, the
expression reduces to 1 - Pr(y =1)
> A highly effective model produces an estimate of Pr(y =1) that
is nearly zero for this data-point, thereby making 1—Pr(y =1)
close to 1
> A non-informative model will led to 1— Pr(y =1) being far from
1 (Pr(y =1) might be close to 0.5 if the data are balanced)
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Likelihood (cont.)

The likelihoods for every individual observation in our data set can
be aggregated by multiplying them together:

n

H r(yi =11x:)Y - (1= Pr(y; = 11x;)) 7

» The notation y; = 1|x; indicates the predicted probability is
contingent on the values of the explanatory variables of that
particular case, which aren't the same for all i€ {1,2,...,n}

» The theoretical maximum of L occurs when Pr(y; =1|x;) is 1
for all data-points with y; =1 and Pr(y; =1|x;) is 0 for all
data-points with y; =0

» The closer a model gets to this theoretical maximum, the better
it fits the data
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Likelihood (cont.)

For two different logistic regression models, Pr(y; =1|x;) can be
very different:

1
Model 1:Pr(y=1)=1— exp(—(Bo + P1Shot Distance))

1
Model 2:Pr(y =1) = 1+ exp(—(Bo + B1Shot Distance + f2Touch Time))

The model whose estimates more closely resemble the observed data
(ie: Pr(y =1) close to 1 for y =1) will have a larger likelihood
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Likelihood Ratio Test

» When two models are nested, we can compare the ratio of their
likelihoods to test whether the larger model provides a
significantly better fit to the data than the reduced model

> For reasons we will not cover, -2 times the natural log of this
ratio follows a Chi-squared distribution when the sample size is
large

> The degrees of freedom are the number of additional
parameters present in the larger model
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Likelihood Ratio Test (cont.)

All of that is to provide background into why/how we can compare
nested logistic regression models using a procedure that is
conceptually similar to the F-test in linear regression:

modell = glm(OUTCOME ~ DRIBBLES, shots, "binomial")
model2 = glm(OUTCOME ~ DRIBBLES + SHOT_CLOCK, shots, "binomial")
lrtest (modell, model2)

## Likelihood ratio test

##

## Model 1: OUTCOME ~ DRIBBLES

## Model 2: OUTCOME ~ DRIBBLES + SHOT_CLOCK

##  #Df LogLik Df Chisq Pr(>Chisq)

## 1 2 -82216

## 2 3 -81674 1 1084 < 2.2e-16 *xx

##H -

## Signif. codes: 0 '#%x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Summary

» Likelihood provides a way of numerically quantifying how well
the sample data fits a particular logistic regression model
» When two logistic regression models are nested, their fits can
be compared using a Likelihood Ratio Test
» The null hypothesis of this test is that the smaller null model
and the larger alternative model both fit the data equally well
» When the likelihood ratio is large (leading to a small p-value),
there is evidence that the alternative model fits the data

significantly better
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