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Introduction

Ï When fitting a logistic regression we’ve used the argument
family="binomial" in the glm() function

Ï This specifies the probability distribution involved in the model

Ï For a single observation, the binomial distribution leads to the
following likelihood function:

Pr(y = 1)y · (1−Pr(y = 1))1−y

Ï In logistic regression, after applying the inverse function of
log-odds, Pr(y = 1) is modeled by 1

1+exp(−(β0+β1X1+...))

Ï Thus, our modeling choices, such as which explanatory variables
to include, influence the likelihood function
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Likelihood

This likelihood function allows us to measure how well our model is
doing:

Pr(y = 1)y · (1−Pr(y = 1))1−y

Ï If a data-point is observed to have y = 1, this expression
reduces Pr(y = 1)

Ï A highly effective model should produce an estimate of
Pr(y = 1) that is close to 1 for this data-point

Ï A non-informative model should produce an estimate of
Pr(y = 1) far from 1 (close to 0.5 if the data are balanced)
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Likelihood (cont.)

Likelihood function (one data-point)

Pr(y = 1)y · (1−Pr(y = 1))1−y

Ï Similarly, if a data-point is observed to have y = 0, the
expression reduces to 1−Pr(y = 1)

Ï A highly effective model produces an estimate of Pr(y = 1) that
is nearly zero for this data-point, thereby making 1−Pr(y = 1)
close to 1

Ï A non-informative model will led to 1−Pr(y = 1) being far from
1 (Pr(y = 1) might be close to 0.5 if the data are balanced)
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Likelihood (cont.)

The likelihoods for every individual observation in our data set can
be aggregated by multiplying them together:

L=
n∏

i=1
Pr(yi = 1|xi)yi · (1−Pr(yi = 1|xi))1−yi

Ï The notation yi = 1|xi indicates the predicted probability is
contingent on the values of the explanatory variables of that
particular case, which aren’t the same for all i ∈ {1,2, . . . ,n}

Ï The theoretical maximum of L occurs when Pr(yi = 1|xi) is 1
for all data-points with yi = 1 and Pr(yi = 1|xi) is 0 for all
data-points with yi = 0

Ï The closer a model gets to this theoretical maximum, the better
it fits the data
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Likelihood (cont.)

For two different logistic regression models, Pr(yi = 1|xi) can be
very different:

Model 1 :Pr(y = 1)= 1
1+exp(−(β0+β1Shot Distance))

Model 2 :Pr(y = 1)= 1
1+exp(−(β0+β1Shot Distance+β2Touch Time))

The model whose estimates more closely resemble the observed data
(ie: Pr(y = 1) close to 1 for y = 1) will have a larger likelihood
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Likelihood Ratio Test

Ï When two models are nested, we can compare the ratio of their
likelihoods to test whether the larger model provides a
significantly better fit to the data than the reduced model

Ï For reasons we will not cover, -2 times the natural log of this
ratio follows a Chi-squared distribution when the sample size is
large

Ï The degrees of freedom are the number of additional
parameters present in the larger model
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Likelihood Ratio Test (cont.)

All of that is to provide background into why/how we can compare
nested logistic regression models using a procedure that is
conceptually similar to the F -test in linear regression:

model1 = glm(OUTCOME ~ DRIBBLES, data = shots, family = "binomial")
model2 = glm(OUTCOME ~ DRIBBLES + SHOT_CLOCK, data = shots, family = "binomial")
lrtest(model1, model2)

## Likelihood ratio test
##
## Model 1: OUTCOME ~ DRIBBLES
## Model 2: OUTCOME ~ DRIBBLES + SHOT_CLOCK
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 2 -82216
## 2 3 -81674 1 1084 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Summary

Ï Likelihood provides a way of numerically quantifying how well
the sample data fits a particular logistic regression model

Ï When two logistic regression models are nested, their fits can
be compared using a Likelihood Ratio Test

Ï The null hypothesis of this test is that the smaller null model
and the larger alternative model both fit the data equally well

Ï When the likelihood ratio is large (leading to a small p-value),
there is evidence that the alternative model fits the data
significantly better
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