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Motivation

Ï Pearson’s correlation coefficient allows us to quantify the
strength of a linear association between two variables

Ï But in situations with a clear explanatory and response variable,
correlation doesn’t tell us how a change in the explanatory
variable impacts the response variable

Ï For example, if r =−0.7 we know an increase in the explanatory
variable should lead to a decrease in the response, but without
more information we do not know how much of a decrease to
expect
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Simple Linear Regression

Simple linear regression is a model used to represent a linear
relationship between a quantitative explanatory variable and a
quantitative response variable
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As a line, the model is defined by a slope, b1, and an intercept, b0
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Simple Linear Regression

There are infinitely many lines, we want the one with the smallest
sum of squared residuals

Ï The residual of the i th data-point is the difference: yi − ŷi ,
where ŷi = b0+b1xi is the model’s prediction

Ï Residuals reflect the “errors” made by the model, we want the
model with the smallest overall amount of error
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Simple Linear Regression

We’ll rely upon R to find the slope and intercept corresponding to
the smallest amount of error:
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Ï Here the fitted regression equation is: ŷ = 881.2+3.4∗Weight
Ï What does the estimated intercept, 881.2, tell us?
Ï What does the estimated slope, 3.4, tell us?
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Coefficient of Variation

The coefficient of variation, R2, is a popular measure of how
much “information” an explanatory variable (or set of multiple
explanatory variables) contains about a response variable:

R2 =
∑n

i=1(ŷi −y)2∑n
i=1(yi −y)2

Ï If the explanatory variable provides very little information, its
predictions, ŷi , will be similar to the average value of the
response variable, y , regardless of the value of X

Ï In this scenario, the line’s slope is approximately zero and R2 ≈ 0
Ï If the regression line perfectly coincides with the observed data,

ŷi = yi for all cases, and R2 = 1

6 / 13



Correlation vs. Regression and R2

Ï For simple linear regression, R2 equals Pearson’s correlation
coefficient squared (ie: R2 = r2)

Ï Correlation is symmetric
Ï The correlation between RMR and Weight is the same as the

correlation between Weight and RMR

Ï Regression is asymmetric
Ï The regression model that uses RMR to predict Weight is

different from the model that uses Weight to predict RMR
Ï The choice of explanatory and response variable matter for

regression! They do not for correlation!
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Caution #1 - Two Regression Lines

Below are the two choices of explanatory and response variables for
the RMR dataset:
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Predict RMR using Weight
Predict Weight using RMR
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Caution #2 - Outliers and Influence
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Outliers in the response variable only exert a disproportionate
impact on the regression line if they are also far from the average
value of the explanatory variable
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Caution #3 - Extrapolation

In 2004, an article was published in Nature titled “Momentous
sprint at the 2156 Olympics”. The authors plotted the winning
times of the men’s and women’s 100m dash in every Olympics,
fitting separate regression lines to each. They found that the lines
will intersect at the 2156 Olympics, here are a few media headlines:

Ï “Women ‘may outsprint men by 2156’ ” - BBC News
Ï “Data Trends Suggest Women will Outrun Men in 2156” -

Scientific American
Ï “Women athletes will one day out-sprint men” - The Telegraph
Ï “Why women could be faster than men within 150 years” - The

Guardian

Do you have any problems with these conclusions?
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https://www.nature.com/articles/431525a
https://www.nature.com/articles/431525a


Extrapolation

Here’s a figure from the original publication in Nature:
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https://www.nature.com/articles/431525a


Extrapolation

source: https://callingbullshit.org/case_studies/case_study_gender_gap_running.html
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Conclusion

Ï Simple linear regression provides us an asymmetric tool for
describing the relationship between two quantitative variables

Ï We’ll soon see that this framework can be extended to
encompass more complex models involving several variables

Ï Simple linear regression assumes a straight-line relationship,
with software like R estimating the slope and intercept that
produce the best-fitting line for the observed data

Ï The sum of squared residuals determines the best fitting model
Ï When using simple linear regression we should be careful about

our choice of explanatory variable, aware of the role of outliers,
and we should avoid extrapolation
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