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Introduction

We recently learned about one-way ANOVA, a statistical test for
scenarios involving a nominal categorical explanatory variable and a
quantitative outcome. The alternative model in one-way ANOVA
can be expressed as a regression model:

Group one-way ANOVA Regression
1 yi =µ1+ϵi
2 yi =µ2+ϵi yi =β0+β1Xi1+β2Xi2+ϵi
3 yi =µ3+ϵi

X1 and X2 are dummy variables (0’s and 1’s), such that:

Ï µ1 =β0 (the reference group when both X1 and X2 are zero)
Ï µ2 =β0+β1 (when X1 = 1)
Ï µ3 =β0+β2 (when X2 = 1)
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The F -test for Regression

Similarly, the null model in one-way ANOVA can also be expressed
as an intercept-only regression model:

Group one-way ANOVA Regression
All yi =µ+ϵi yi =β0+ϵi

Ï Thus, the F -test performed in one-way ANOVA is actually
comparison of nested regression models

Ï Two models are nested when one model, known as the reduced
model, is a special case of a larger model

Ï yi =β0 +ϵi is a special case of the larger model:
yi =β0 +β1Xi1 +β2Xi2 +ϵi that occurs when β1 = 0 and β2 = 0
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The F -test for Regression

In regression, the F -test’s null hypothesis is that additional
predictors in the larger model provide no improvement over the
predictors already present in the reduced model, or in statistical
symbols:

H0 :βj =βj+1 =βj+2 = . . . =βp = 0

Ï {βj ,βj+1, . . . ,βp} are the respective coefficients of all variables
included in the larger, alternative model that are not present in
reduced model.

Ï Thus, both models contain {β1,β2, . . . ,βj−1} and we don’t learn
anything about the corresponding variables from the test
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The F -test for Regression

The F -test assesses whether the sum of squared residuals decreases
by more than would be expected by chance when additional
predictors are included in a regression model:

F = (SS0−SS1)/(d1−d0)
SS1/(n−d1)

Ï Here SS0 is the sum of squares of the reduced model, which
the smaller one that represents the null hypothesis

Ï SS1 is the sum of squares of the larger model, which represents
the alternative hypothesis

Ï d0 is the number of parameters in the reduced model, while d1
is the number of parameters in the larger model
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Example - Modeling Occupational Prestige

A study collected data on n = 98 occupations. We’ll consider the
variables:

Ï prestige: the average prestige rating of the job (from 0 to 100)
Ï education: the average number of years of schooling for

people holding the job
Ï type: the type of job, either skilled professional (prof), blue

collar (bc), or white collar (wc)
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Example (cont.)

In this application we’ll consider the following models:

Ï Model 1: prestige ~ 1
Ï The intercept-only model yi =β0 +ϵi

Ï Model 2: prestige ~ education
Ï An alternative model yi =β0 +β1Educi +ϵi

Ï Model 3: prestige ~ education + type
Ï An even larger model

yi =β0 +β1Educi +β2(type =“prof")+β3(type =“wc")+ϵi

Questions: Is model 1 nested within model 3? Is model 2 nested
within model 3? Why?
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Example (cont.)

The F -test compares models using their sums of squares (squared
residuals):
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Recall: SS =∑n
i=1(yi − ŷi)2 and F = (SS0−SS1)/(d1−d0)

SS1/(n−d1)
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Example (cont.)

Below we use anova() to evaluate whether Model 2 is superior to
Model 1:
## Analysis of Variance Table
##
## Model 1: prestige ~ 1
## Model 2: prestige ~ education
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 97 28346.9
## 2 96 7064.4 1 21283 289.21 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-value of the F -test is very small, thereby providing strong
evidence that Model 2 better fits the data

9 / 16



Example (cont.)

We can repeat the same process to evaluate whether Model 3 is
superior to Model 2:
## Analysis of Variance Table
##
## Model 1: prestige ~ education
## Model 2: prestige ~ education + type
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 96 7064.4
## 2 94 5740.0 2 1324.4 10.844 5.787e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here we conclude that Model 3 is indeed superior to Model 2
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Example (cont.)

What if we add another variable, RX, consisting of randomly
generated values with no relation to the response?
## Analysis of Variance Table
##
## Model 1: prestige ~ education + type
## Model 2: prestige ~ education + type + RX
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 94 5740.0
## 2 93 5671.5 1 68.574 1.1245 0.2917

The F -test indicates a lack of evidence that this variable improves
the model, so we should omit it as the complexity it adds to the
model isn’t warranted.
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F -test Assumptions

The primary assumption of the F -test for regression is that
alternative model’s errors are independent and follow identical
Normal distributions
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F -test Assumptions

We can assess independence by graphing the residuals vs. the
model’s predictions:
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If errors are independent, we expect there to be no pattern, since an
error of a given magnitude is equally likely to occur anywhere
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F -test Assumptions

We can assess Normality using a Q-Q plot:
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If errors are Normally distributed, we expect the standardized
residuals (Z -scores of the observed residuals) to match the Z -scores
for those observation’s percentiles in a Normal distribution, leading
to a 45-degree line in the Q-Q plot
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Assumptions and Lack of Fit

Checking these assumptions can also help us determine if we’re
using an inappropriate model for our data:
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A U-shaped pattern in the residuals happens when the model uses a
straight line to represent a quadratic relationship
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Handling Violated Assumptions

If one or more of the assumptions of our linear regression model are
not met, any p-values we calculate might not be accurate. There
are a variety of proposed solutions, we’ll focus on the following:

1. Transforming the outcome variable using logarithms
2. Improving the fit of the model by including omitted variables or

changing the functional form of the included variables using
polynomials

3. Reporting the results with caution

16 / 16


