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Introduction

When analyzing data using one-way ANOVA, our workflow involved
the following steps:

1. Fit the ANOVA model (aov() in R) to evaluate the global null
hypothesis (all group means are equal)

2. Check the assumptions of the ANOVA model to ensure the
p-value from Step 1 is reliable

3. If the global null hypothesis is rejected (the p-value is small)
perform post-hoc testing to determine which group means are
the most different
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Introduction (cont.)

Inference for linear regression models follows a similar workflow:

1. Fit the models of interest (lm() in R) and use an F -test to
determine which should be preferred

2. Check the assumptions of the model to ensure the p-value
from Step 1 is reliable

3. Perform post-hoc tests on the coefficients in the preferred
model to determine which variables are most strongly related
to the outcome
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Example (Tips)

A waiter from a restaurant in suburban New York city recorded the
amount they were tipped along with other information about the
party and order for n = 244 tables they served.
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Shown above are the relationship between two explanatory variables,
TotBill and Smoker, and the amount tipped.
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Model Comparisons

Consider a few possible models:

1. Tip ~ 1
2. Tip ~ TotBill
3. Tip ~ TotBill + Smoker

Note that these models are nested, so their fits can be compared
using F -tests
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Model Comparisons (cont.)

Based upon the output below, which model should be preferred?
## Analysis of Variance Table
##
## Model 1: Tip ~ 1
## Model 2: Tip ~ TotBill
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 243 465.21
## 2 242 252.79 1 212.42 203.36 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6 / 15



Model Comparisons (cont.)

Based upon the output below, which model should be preferred?
## Analysis of Variance Table
##
## Model 1: Tip ~ TotBill
## Model 2: Tip ~ TotBill + Smoker
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 242 252.79
## 2 241 251.52 1 1.2671 1.2141 0.2716
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Assumptions

Now let’s check the assumptions behind the preferred model (Tip ~
TotBill):
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Is it appropriate to perform statistical inference using this model? If
not, what should we do?
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Assumptions (cont.)

We might think to apply a log-transformation, thereby making the
model log2(Tip) ~ TotBill and leading to the following
diagnostic plots:
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Interpretation

After confirming the assumptions for inference are met, we can be
confident that our model is an improvement over the null model,
suggesting an association between TotBill and Tip. But we
should also report how these variables are related

Ï Our earlier fitted model was T̂ip= 0.92+0.105∗TotBill
Ï How do we interpret the estimated coefficient 0.105?

Ï The fitted log-transformed model is
log2(T̂ip)= 0.535+0.046∗TotBill

Ï Increases in TotBill no longer have a linear impact on Tip
Ï We can undo the log-transform using its inverse function
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Interpretation (cont.)

If we do some mathematical rearranging:

log2(T̂ip)= 0.535+0.046∗TotBill
=⇒ T̂ip= 20.535+0.046∗TotBill

=⇒ T̂ip= 20.535∗20.046∗TotBill

So if TotBill increases by $1, the tip is expected to increase by a
factor of 20.046 = 1.032, or a 3.2% increase.
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Interpretation (cont.)

Below are both fitted models shown on same scale:
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Inference

Interpreting the coefficient of TotBill is a precursor to performing
statistical inference on it, which can be done using summary():
##
## Call:
## lm(formula = log2(Tip) ~ TotBill, data = tips)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8204 -0.2866 0.0216 0.3251 1.4954
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.535410 0.074774 7.16 9.6e-12 ***
## TotBill 0.046040 0.003448 13.35 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4784 on 242 degrees of freedom
## Multiple R-squared: 0.4243, Adjusted R-squared: 0.4219
## F-statistic: 178.3 on 1 and 242 DF, p-value: < 2.2e-16

This table reports t-tests of the hypothesis H0 :βj = 0 for each
coefficient. How should we interpret the TotBill row?
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Inference (cont.)

We can also calculate confidence interval estimates for our model’s
coefficients:
fit = lm(log2(Tip) ~ TotBill, data = tips)
confint(fit, level = 0.95)

## 2.5 % 97.5 %
## (Intercept) 0.3881177 0.68270143
## TotBill 0.0392490 0.05283119

Ï Remember the outcome has been log-transformed, so we
should apply the inverse transformation to the endpoints

Ï Thus, the estimated effect of a $1 increase in TotBill is
plausibly between 20.039 and 20.053, a 2.8% to 3.7% increase
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Conclusion

Ï The F -test is used to compare nested linear regression models
Ï It answers the question “are {Xj , . . . ,Xp} associated with Y after

accounting for {X1, . . . ,Xj−1}?
Ï If the F -test suggests a model is better than the null model, we

must follow up by describing the effects of each variable of
interest in that model

Ï t-tests and confidence intervals allow us to make statistical
claims about the coefficients of these variables

Ï We should know how to handle interpretations when the
outcome has been log-transformed
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